Шаг за шагом. Усилители и радиоузлы
Шрифт:
В трансформаторном каскаде так же, как и в реостатном, к лампе подключен сложный делитель напряжения, одним из элементов которого является полезная нагрузка Ra. Во всех случаях желательно, чтобы сопротивление Rп было как можно меньше по сравнению с Ra. Чем меньше Rп, тем меньшая часть переменного напряжения Uа~, а значит, и мощности на нем теряются.
Индуктивность первичной обмотки LI шунтирует нагрузку. На высших частотах индуктивное сопротивление обмотки велико (рис. 30, 11), и оно мало влияет на общее сопротивление участка аб.
рис. 30, 11
Индуктивность рассеяния Lpаc, наоборот, должна быть как можно меньше. С увеличением частоты на ней теряется все большая часть переменного напряжения Uа~, и из-за этого появляется завал частотной характеристики в области высших частот. При конструировании выходных трансформаторов принимают меры для уменьшения Lpac.
На обеих эквивалентных схемах остался неразобранным лишь один элемент — внутреннее сопротивление лампы Ri. А вместе с тем выбор многих других элементов схемы, и в первую очередь сопротивления анодной нагрузки, в большой степени определяется величиной Ri. В практике приняты следующие ориентировочные нормы: для триодов Ra должно быть в два-три раза больше Ri, для пентодов — в три — пять раз меньше. В выходных каскадах желательно применять лампы с небольшим Ri, так как это улучшает демпфирование громкоговорителя. Именно поэтому в выходных каскадах иногда применяют мощные триоды, внутреннее сопротивление которых значительно меньше, чем у тетродов и пентодов. Правда, и у этих ламп можно заметно понизить величину Ri, применяя интересную схемную «хитрость» — отрицательную обратную связь.
Переменное напряжение на сетке управляет анодным током, и он создает на анодной нагрузке переменную составляющую напряжения. Это нормальная прямая связь сеточной и анодной цепи, связь через электронный поток в направлении сетка — анод. А теперь попробуем создать связь в обратном направлении. Возьмем часть мощности усиленного сигнала (мощной копии) и направим ее из анодной цепи в сеточную (рис. 38, рис. 39, 1). Давайте попытаемся выяснить, к чему это приведет.
Рис. 38. Возвращая некоторую часть выходной мощности усилителя во входную цепь, мы вводим обратную связь. Если сигнал обратной связи содействует входному сигналу, обратная связь положительна, а если противодействует — отрицательна.
рис. 39, 1
На рис. 39, 1, а показан один из способов введения обратной связи. Со специальной обмотки III выходного трансформатора Трв напряжение обратной связи Uo.с подается в цепь управляющей сетки. Туда же, как обычно, подается напряжение Uвх — сигнал, поступающий на вход усилителя с предыдущего каскада. Теперь напряжение Uс, действующее на сетке Л1 складывается из двух напряжений — Uвх и Uo.с. Результат этого сложения прежде всего зависит от фазовых соотношений Uвх и Uo.с.
Если оба напряжения совпадают по фазе, то они действуют согласованно и Uc больше Uo.с (рис. 39, 1, б, в). Такую обратную связь называют положительной. Она фактически повышает усиление каскада, так как «бесплатно» увеличивает входное, а значит, и выходное напряжение.
Если напряжения Uвх и Uo.с действуют в противофазе, то результирующее Uc оказывается меньше Uвх (рис. 39, 1, г, д), а это фактически означает, что усиление каскада уменьшается. Такая обратная связь называется отрицательной.
В обоих случаях для оценки влияния обратной связи вводят коэффициент (рис. 40), который показывает, какая часть выходного напряжения подается обратно в цепь управляющей сетки ( = Uo.с/Uвых). Чем больше , тем сильнее, глубже обратная связь, тем в большей степени она повышает (положительная) или понижает (отрицательная) усиление каскада.
Часто вместо коэффициента указывают другую величину. Она называется «глубина обратной связи» и численно равна 1 + Uo.с/Uc. Чем больше Uo.с по сравнению с Uвх, тем меньше оказывается их разность Uc (отрицательная обратная связь), тем, следовательно, глубже обратная связь. Глубину обратной связи обычно выражают в децибелах. Если сказано, что глубина обратной связи составляет 20 дб, это значит, что Uo.с в девять раз больше Uc, то есть Uвх, поступающее с предыдущего каскада, почти на 90 % скомпенсировано отрицательной обратной связью.
В нашей схеме глубина обратной связи зависит от числа витков обмотки III: чем больше витков в этой обмотке, тем сильнее обратная связь.
В схеме рис. 39, 1, а довольно просто изменить характер обратной связи — положительную превратить в отрицательную, и наоборот. Для этого достаточно поменять местами выводы А и Б обмотки III. Если при заземлении вывода А получается положительная обратная связь, то при заземлении вывода Б она будет отрицательной. Объясняется это очень просто. Напряжение на обмотке III непрерывно меняется. Во время одного полупериода на выводе А действует «плюс», а на выводе Б — «минус». Во время следующего полупериода полярность меняется: на выводе А появляется «минус», на выводе Б — «плюс». В зависимости от того, какой из выводов заземлен, мы подаем на сетку «плюс» либо во время четных полупериодов, либо во время нечетных (это, разумеется, условное разделение). Таким образом, Uo.с оказывается в фазе с напряжением Uвх либо действует против него. Иными словами, меняя местами выводы А и Б, мы сдвигаем фазу напряжения Uo.с на 180° (рис. 39, 1, б, в, г, д).
На первый взгляд может показаться, что в усилителях имеет смысл применять только положительную обратную связь. По крайней мере она дает выигрыш в усилении, в то время как при введении отрицательной обратной связи мы только проигрываем (рис. 39, 1, в). Однако более глубокий анализ показывает, что, проигрывая в усилении (как вы сейчас увидите, этот проигрыш легко вернуть), мы можем получить сразу несколько важных и крупных выигрышей.
Прежде всего с помощью отрицательной обратной связи можно сделать то, чего никаким иным путем добиться невозможно, — снизить нелинейные искажения, возникающие в лампе и выходном трансформаторе (рис. 40).