Шаги за горизонт
Шрифт:
Лекции Бора послужили решающим стимулом для дальнейшего развития атомной физики в Геттингене. Поскольку в зимний семестр 1922/23 учебного года я учился в Геттингене — Зоммерфельд уехал на это время в Америку, — события развертывались с самого начала у меня на глазах. Борн организовал семинар по проблемам теории Бора. Поскольку, как мне помнится, в нем приняло участие едва ли больше восьми физиков и математиков, семинар часто собирался вечерами в доме Борна. Госпожа Борн пирожками или фруктами подкрепляла силы участников. Их точный список я сейчас уже не смог бы привести, в него определенно входили Йордан, Хунд, Ферми, Паули, Нортхайм и математик Карекьярто, может быть не все одновременно; впрочем, и тут я лучше предоставил бы восстановление частных подробностей историку. Задания, которые давал нам в рамках этого семинара Борн, относились исключительно к области механики, и уже отсюда становилось ясно, что Борн тоже видел подлинный камень преткновения в механике и лишь во вторую очередь — в электродинамике или в теории излучения. Мне досталась в этой связи задача разобраться в теории возмущений из классической астрономии; ибо всем, кто работал в нашей области, уже тогда было ясно, что заниматься расчетом простого случая атома водорода с его единственным электроном недостаточно. Правила Бора — Зоммерфельда были с успехом приложимы к водороду даже при наличии возмущения в виде внешнего электромагнитного поля; но при разборе систем со многими электронами возникали непреодолимые трудности. От геттингенских математиков мы знали о головоломной трудности задачи трех тел в астрономии. Периодические и непериодические решения располагаются там в сколь угодно тесном соседстве. А квантовые условия опирались исключительно на допущение периодических решений. Мы углубились поэтому прежде всего в общую теорию возмущений механики Гамильтона — Якоби, как она применяется астрономами. Потом перешли к изучению резонансных эффектов между различными планетными
14
8 Карл Болин (К. Bohlin) — шведский астроном. В 1888 г. предложил приближенный метод решения частного случая задачи многих тел в небесной механике
(Bohlin К. Uber eine neue Ann"ahrungsmethode in der St"orungstheorie//Bihand tili Kungl. Svenska Vetenskap Akademiens Handlinger. Stockholm, 1888, Aid. I, № 5, v. 14.
Метод Болина был использован М. Борном и В. Гейзенбергом в статье:
Born М., Heisenberg W. "Uber Phasenbeziehungen bei den Bohrschen modellen von Atomen und Molekeln//Z. f. Physik. 1923, Bd. 14. S. 44–55.
Естественно, пут же, в Геттингене, продолжалась работа и над другими темами, выдвинутыми «фестивалем Бора» и касавшимися многоэлектронной системы и периодической системы элементов. Вспоминаю, что этому были посвящены главным образом дискуссии между Бором и Хундом, в то время как я, хотя и занимался еще с мюнхенских времен аномальным эффектом Зеемана и мультиплетами, уделял больше внимания сущностным вопросам принципа соответствия. Другой важный стимул в том же направлении исходил из работ Ладенбурга и Крамерса по дисперсионной теории. Здесь Фурье-компоненты, описывающие движение в классической механике, были поставлены в связь с эйнштейновскими вероятностями перехода при рассеянии света. Принцип соответствия был тем самым конкретно проинтерпретирован через соотношения, взятые из классической теории дисперсии, так что опять можно было признать классическую механику наполовину верной.
Тогдашнее состояние дискуссий очень точно изображено в летней (1924 года) работе Борна под заглавием «О квантовой механике». Здесь, таким образом, впервые был употреблен термин «квантовая механика», и я должен, пожалуй, воспроизвести резюме, стоявшее в начале работы Борна. Оно гласило: «В работе содержится попытка сделать первый шаг к квантовой механике внутриатомной связи; для важнейших свойств атома — стабильности, резонанса на дискретных частотах, принципа соответствия — предлагаются объяснения, естественным образом вытекающие из законов классической физики. Теория включает дисперсионную формулу Крамерса и обнаруживает тем самым близкое родство с полученной в Мюнхене [Гейзенбергом] формулировкой правил аномального эффекта Зеемана» [15] . Как явствует из деталей работы, Борн имел совершенно отчетливое ощущение, что квантовая механика отличается от классической механики тем, что на место дифференциальных уравнений классической теории в квантовой теории должны выступить разностные уравнения. Он дал мне поэтому задание изучить теорию разностных уравнений, уже подробно разработанную математиками. Я выполнил задание с немалым эстетическим наслаждением, но также и с чувством, что физические проблемы никогда нельзя разрешить, исходя из чистой математики. Реальная преграда, о которой мы тогда догадывались, но которую еще не понимали, заключалась в том, что мы все еще продолжали говорить об орбитах электронов и не имели тут, собственно, никакой альтернативы; ведь была же видна траектория электрона в камере Вильсона, так, стало быть, и внутри атома должны были существовать орбиты электронов.
15
9 Born M. "Uber Quantenmechanik//Z. f. Physik, 1924, Bd. 2ss, 379–395. Русск. перев.:
Борн M. О квантовой механике//Борн М. Размышления и воспоминания физика. М., «Наука», 1977, с. 133.
Прежде чем перейти теперь к событиям 1925 года, я хотел бы рассказать две небольшие истории, показывающие, как напряженно мы занимались тогда проблематикой квантовой теории. Группа молодых людей, учившихся у Борна и Франка, вообще не могла говорить ни о чем другом, кроме теории квантов, — до того мы были захвачены ее успехами и внутренними противоречиями. Мы брали тогда скромные обеды в одном частном заведении напротив аудиторного корпуса. Однажды, к моему изумлению, хозяйка попросила меня после обеда для частного разговора в свою комнату. Она объявила мне, что мы, физики, к сожалению, не сможем впредь обедать у нее, потому что вечные профессиональные глупости за нашим столом до того надоели другим людям за другими столами, что она потеряет остальных клиентов, если не расстанется с нами. В другой раз мы вместе отправились на лыжную прогулку в Гарц, кажется, мы хотели подняться на Брокен, и на обратном пути в Андреасберг один из группы, по-моему Ханле, пропал. Мы искали и не могли найти его и уже боялись, как бы он не повредил себе ногу или не заблудился в лесу. Вдруг из порядком отдаленного лесочка мы услышали довольно-таки жалобный крик «h!» (аш ню), и поняли, куда перенести свои поиски.
Но теперь вернемся к событиям 1925 года. В зимний семестр 1924/25 учебного года я снова работал в Копенгагене, пытаясь построить вместе с Крамерсом теорию дисперсии. По ходу работы в формулах, описывающих эффект Рамана, появились определенные математические выражения, которые в классической теории были произведениями рядов Фурье, тогда как в квантовой теории они явно подлежали замене аналогично построенными произведениями рядов, относящихся к квантово-теоретическим амплитудам линий спектра испускания или поглощения. Закон умножения для этих рядов имел простой и убедительный вид. Когда в летний семестр 1925 учебного года я возобновил эту работу в Геттингене, одно из первых же обсуждений с Борном привело нас к выводу, что я должен попытаться угадать амплитуды и интенсивности для водорода, исходя из формул классической теории с учетом боровского принципа соответствия. Этот метод угадывания уже успел хорошо зарекомендовать себя. Нам казалось, что мы достаточно усвоили его в прошлых работах. Однако при более углубленном подходе задача оказалась чересчур сложной, по крайней мере для моих математических способностей, и я искал более простые механические системы, где метод угадывания обещал больший успех. При этом у меня возникло ощущение, что я должен отказаться от какого бы то ни было описания орбит электронов, должен даже сознательно изгонять подобные представления. Вместо этого мне хотелось целиком положиться на полуэмпирические правила умножения амплитудных рядов, которые оправдали себя в теории дисперсии. Искомой механической системой я избрал одномерный ангармонический осциллятор, который казался мне достаточно простой и вместе с тем не слишком тривиальной моделью.
Примерно в то же время, в конце мая или в начале июня, мне пришлось попросить у Борна двухнедельный отпуск, поскольку я заболел очень неприятной формой сенной лихорадки и хотел дождаться выздоровления на уединенном острове Гельголанд вдали от цветущих лугов. Там я смог без всяких внешних помех уйти с головой в свою проблему. Я заменил пространственные координаты таблицей амплитуд, которая предположительно должна была соответствовать классическому ряду Фурье, и написал для нее классическое уравнение движения, причем в нелинейном члене, выражавшем ангармоничность, применил умножение амплитудных рядов, оправдавшее себя в дисперсионной теории. Лишь гораздо позднее я узнал от Борна, что речь тут шла просто о матричном умножении — разделе математики, остававшемся мне до того времени неизвестным. Меня беспокоило то, что при такого рода умножении рядов a x b не обязательно оказывалось равным b x а. При таком уравнении движения таблицы, выражавшие пространственное местоположение, не достигали еще однозначной определенности. Предстояло еще найти замену для квантового условия Бора — Зоммерфельда, ибо в нем применялось понятие электронных орбит, которое я намеренно сделал для себя запретным. Но отвечающее принципу соответствия преобразование вскоре привело меня к известному мне по Копенгагену правилу сумм, которое Томас и Кун вывели из дисперсионной теории [16] . Тем самым вроде бы вся математическая схема обретала законченный вид, и теперь оставалось исследовать, поддается ли она механической интерпретации. Для этого требовалось показать, что существует выражение для энергии, которое можно представить через таблицы координат и которое по принципу соответствия связано с классической формулой энергии; что это выражение постоянно во времени, то есть что закон сохранения энергии не нарушается; и что соответственно таблицы, выражающие энергию, представляют собою то, что мы сегодня называем диагональной матрицей. Наконец, предстояло доказать, что разности энергетических уровней различных атомных состояний с точностью до множителя h, то есть постоянной Планка, соответствуют частоте излучения, испускаемого при переходах. Таким образом, надо было удовлетворить сразу многим условиям; расчеты были элементарными, но именно поэтому довольно громоздкими. В конце концов оказалось, что все условия удовлетворены, что можно тем самым уверенно говорить о создании основ квантовой механики. По возвращении в Геттинген я показал работу Борну, который нашел ее интересной, но несколько странной; странной потому, что понятие электронных орбит было полностью элиминировано. Он все равно послал ее для публикации в физический журнал. Борн и Йордан углубились в математические выводы из работы, на этот раз без меня, потому что Эренфест и Фаулер пригласили меня прочесть доклады в Голландии и в английском Кембридже. Буквально за несколько дней Борн и Йордан отыскали решающее соотношение pq — qp = 2i/h, благодаря которому вся математическая схема стала сразу прозрачной; теперь можно было легко и изящно выводить такие важные законы, как закон сохранения энергии [17] .
16
10 Thomas W. "Uber die Zahl der Dispersionselelektronen, die einem station"aren Zustande sugeordnet sind//Die Naturwissenschaften. 1925. Bd. 13, S. 627.
Kuhn W. "Uber die Gesamtst"arke der von einem Zustande ausgehenden Absorptionslinien//Z. f. Physik. 1925. Bd. 33. S. 408–412.
Born M., Jordan P. Zur Quantenmechanik// Z. f. Physik. 1925. Bd. 34. S. 858–888.
17
11 Борн M., Йордан П. О квантовой механике//УФН, т. 122, вып. 4, 1977, с. 586–611.
К моему возвращению из Англии в сентябре в Копенгаген уже была, как мне помнится, написана работа Борна — Йордана, содержащая убедительное математическое обоснование квантовой механики. Немного позднее, кажется где-то в конце октября, когда я снова был в Геттингене, я получил от Дирака из Кембриджа письмо, где он сообщал мне свою форму квантовой механики, построенную на основе моих кембриджских сообщений. Он не применял матричного исчисления, а вводил для динамических переменных р и q особую алгебру, в которой решающую роль играли, естественно, перестановочные отношения [18] . Сразу было видно, что формулировка Дирака эквивалентна методу Борна — Йордана. Мы могли уже считать, что стоим со своей новой механикой на сравнительно надежном математическом основании, и решили втроем, то есть Бори, Йордан и я, написать подробную работу, в которой мы должны были рассмотреть системы со многими степенями свободы, теорию квантовомеханических возмущений и связь всего этого с теорией излучения. В этой работе нам в полной мере пригодилась математическая традиция Геттингенского университета. Борн был не только прекрасно знаком с математической теорией матриц, он знал также Гильбертову теорию интегральных уравнений и квадратичных форм бесконечного числа переменных. Он смог соответственно показать, что анализ квантовомеханической системы сводится к преобразованию бесконечных квадратичных форм относительно главной оси. Отсюда можно было легко вывести и теорию возмущений. Проведенные Йорданом расчеты явлений пульсации ясно показали прерывный характер квантовых переходов.
18
12 В. Гейзенберг делал в Кембридже доклад на заседании семинара молодых физиков, организованном П. Л. Капицей, работавшим в Англии у Резерфорда в 1921–1934 гг. П. Дирак участвовал в заседаниях «клуба Капицы», как называли этот семинар. Действительно ли темой доклада была новая работа Гейзенберга по квантовой механике, вопрос спорный. Во всяком случае, Дирак начал заниматься этими проблемами только осенью, когда ознакомился с текстом статьи Гейзенберга. Русский перевод статьи П. Дирака «Основные уравнения квантовой механики» опубликован в УФН (прим. И), с. 611–621.
Но при написании работы были и трудности, упоминаемые Борном в своих мемуарах. Для меня было очень важно выдвинуть на передний план физическое содержание теории, особенно отсутствие электронных орбит в атоме, тогда как Борн считал сердцевиной теории преобразования относительно главных осей, определенный математический формализм. Было еще и внешнее затруднение в том, что в конце октября Борн уезжал в Америку; для совместных обсуждений в Геттингене оставалось поэтому лишь несколько дней, и нам с Йорданом пришлось закончить работу уже после отъезда Борна. Как видите, уже и тогда заграничные поездки, доклады и конгрессы мешали научному прогрессу, хотя, конечно, еще не в такой чудовищной мере, как сегодня. «Работа трех», как мы ее тогда называли, ибо название «коллективный труд» было еще непривычным, была отослана в физический журнал в середине ноября [19] .
19
13 Born М., Heisenberg W., Jordan Р. Zur Quantenmechanik. II.//Z. f. Physik. 1926, Bd. 35, S. 557–615.
Мы состояли тогда в регулярной переписке с Вольфгангом Паули в Гамбурге, который с самого начала входил в самый тесный круг мюнхенских геттингенских квантовых теоретиков. Паули предпринял разработку проблемы водорода, игравшего столь важную роль в истории квантовой теории, по схеме новой квантовой механики. С помощью методики, созданной гамбуржцем. Ленцем, он достиг полного успеха, и уже до завершения в Геттингене «работы трех» Паули доказал, что новая теория позволяет правильно вычислить также и спектр атома водорода. Паули сумел точно рассчитать и более сложный случай водородного атома в пересекающихся электрическом и магнитном полях. Этот успех решающим образом повысил убедительность новой механики. Здесь кончается мое описание важнейших событий 1925 года в квантовой теории, насколько они непосредственно связаны с Геттингеном; остается, пожалуй, сказать еще только несколько слов о тех трудностях, на которые я намекнул выше и которые касались проблемы «физическое содержание — математическая форма».
Разумеется, для меня было совершенно ясно огромное значение замкнутой и красивой математической формы, которую Борн и Йордан придали новой теории. Ни в одном другом городе мира не удалось бы выработать эту математическую схему так же быстро, как в Геттингене. Однако с самого начала у меня было ощущение, что главная проблема заключается не в математике, а в точке приложения математики к природе. В конце концов мы ведь собирались описывать природу, а не просто заниматься математикой, и я опасался, что эта главная задача «работы трех» еще отнюдь не решена. Да, рассчитать энергию стационарных состояний или интенсивность линий мы умели, но как описать, скажем, траекторию электрона в камере Вильсона, поддающуюся как-никак непосредственному наблюдению, — этого мы не знали. Мы условились не говорить об орбитах и траекториях, но ведь в конце концов они все же так или иначе обладают физической реальностью. После завершения «работы трех» я написал грустное письмо к Паули, с которым всегда делился своими заботами, и одно место из этого письма мне хотелось бы вам привести: «Я приложил все усилия, чтобы сделать работу более физической, чем она была, так что наполовину я ею удовлетворен. Но общий облик теории меня все еще удручает, и я был очень рад, что Вы в своих взглядах на математику и физику стоите целиком на моей стороне. Здесь я нахожусь в среде, которая думает и воспринимает вещи диаметрально противоположным образом, и уж не знаю, может быть, я просто слишком туп, чтобы понять математику. Геттинген распадается на два лагеря: одни, как Гильберт, да и Вейль в письме к Йордану, говорят об огромном успехе, достигнутом благодаря введению матричного исчисления в физику, а другие, например Франк, говорят, что „понять матрицы в принципе никогда не удастся“». По сути дела, тут столкнулись два метода работы в теоретической физике, которые я в начале своего выступления разграничил как понятийный и математический, приписав их соответственно Копенгагену и Геттингену. Математической формулировки еще недостаточно для понятийной формулировки. Об этом совершенно ясно свидетельствует и судьба теории относительности. Сформулировав свои правила преобразований, Лоренц, по существу, уже дал ее математическую формулировку, но только Эйнштейн нашел для нее понятийное объяснение. Лоренц, пожалуй, даже предвосхитил понятийное решение проблемы, введя мнимое время наряду с абсолютным временем прежней физики, но по-настоящему вся ситуация была понята лишь несколько лет спустя Эйнштейном.