Шаги за горизонт
Шрифт:
Поскольку моя задача — рассказать о встречах с Эйнштейном, не могу не упомянуть об одном маленьком эпизоде, происшедшем во время войны в швабском городе Хехингене. Мой институт, то есть Институт физики кайзера Вильгельма в Берлине — Далеме, был занят во время войны работами по созданию атомного реактора. Из-за усилившихся воздушных налетов на Берлин институт в 1943 году пришлось перебазировать в Южную Германию, и он разместился в маленьком южновюртембергском городке Хехингене в помещении одной текстильной фабрики. Сотрудники были расквартированы среди хехингенских горожан, и случаю было угодно, чтобы я получил две комнате в просторном доме текстильного фабриканта. Когда через несколько недель я ближе познакомился с хозяином, он как-то обратил мое внимание на маленький дом, стоявший наискосок напротив. Представьте себе, дом принадлежал семейству Эйнштейнов, хотя это были не прямые предки знаменитого физика, а другая ветвь фамилии, которая жила здесь, в Швабии, уже сотни лет. Таким образом, Эйнштейн, несмотря на свое нерасположение к Германии, был настоящим швабом. И пожалуй, можно предполагать, что незаурядная активность этой немецкой народности в области философии и искусства наложила свой отпечаток и на мысль Эйнштейна.
После войны я лишь раз повидался с Эйнштейном
привлечь внимание Эйнштейна к своей точке зрения тем, что сообщил ему о предпринятых мною попытках создать единую теорию поля, на которой в течение многих лет была сосредоточена и его работа. Правда, я не верил, что квантовую механику можно вывести как следствие из теории поля, на что надеялся Эйнштейн; я считал наоборот, что единую теорию материального поля, а тем самым и элементарных частиц можно построить только на базе квантовой теории и что именно квантовая теория, с ее удивительными парадоксами, является основой современной физики. Эйнштейн не хотел отвести столь принципиальную роль теории, имеющей статистический характер. Считая ее лучшим, при данном состоянии знаний, описанием атомных явлений, он все же не был готов принять ее в качестве окончательной формулировки законов природы. Фраза «но не думаете же вы, что Бог играет в кости» вновь и вновь произносилась им почти как упрек. По существу, различия между нашими двумя подходами лежали еще глубже. Эйнштейн в своих моделях физики всегда исходил из представления об объективном, существующем в пространстве и времени мире, который мы в качестве физиков наблюдаем, так сказать, лишь извне и движение которого определяется законами природы. В квантовой теории подобная идеализация уже невозможна; устанавливаемые ею законы природы говорят о временных изменениях возможного и вероятного; но условия, определяющие переход от возможности к факту, здесь не поддаются предсказанию: их можно зарегистрировать лишь статистически. Тем самым у классической физики с ее представлением о реальности уходит почва из-под ног, а со столь радикальной переменой Эйнштейн не был готов согласиться. Потому-то за 25 лет, прошедших со времени Сольвеевского конгресса в Брюсселе, наши позиции не сблизились, и при расставании мы продолжали очень по-разному рисовать себе картину будущего развития физики. Впрочем, Эйнштейн был готов терпеть такое положение вещей без всякой горечи. Он знал, какой огромный сдвиг в науке совершил он сам за свою жизнь, и знал также, как трудно бывает — в науке, как и в жизни, — примириться со сдвигами столь больших масштабов.
Развитие понятий в истории квантовой механики [23]
История физики — не просто накопление экспериментальных открытий и наблюдений, к которым подстраивается их математическое описание; это также и история понятий. Первая предпосылка познания явлений природы — введение адекватных понятий; лишь с помощью верных понятий мы в состоянии по-настоящему знать, что мы наблюдаем. При освоении новой области очень часто требуются новые понятия, и обычно эти новые понятия появляются на свет в довольно непроясненной и неразработанной форме. Со временем они модифицируются, иногда почти совершенно вытесняются и заменяются лучшими понятиями, которые рано или поздно достигают ясности и строгой определенности. Мне хотелось бы описать этот процесс на примере трех случаев, имевших важное значение в моей работе. Прежде всего — понятие дискретного стационарного состояния, то есть, собственно говоря, фундаментальное понятие квантовой теории. Затем — понятие состояния, не обязательно дискретного или стационарного; его удалось осмыслить лишь после разработки квантовой и волновой механики. И наконец — тесно связанное с обоими предыдущими понятие элементарной частицы, которое до сих пор вообще не подвергалось достаточному обсуждению. Две первые части моего доклада будут поэтому относиться к истории, хотя в мои намерения и не входит перечисление всех наших ошибок и заблуждений за 50 лет — разве что некоторых из них, — а последняя часть будет отведена проблемам нашей современности и, стало быть, возможным новым ошибкам.
23
16 Первая публикация на английском языке: Heisenberg W. Development of concepts in the history of quantum theory//The Physicist's Conception of Nature, ed. by J. Mehra. Dordrecht — Boston, 1973, p. 264–275.
Как вы знаете, понятие дискретных стационарных состояний было введено в 1913 году Нильсом Бором. Это было центральное понятие его теории атома, замысел которой был очерчен Бором в следующей фразе: «Необходимо отдать себе отчет в том, что эта теория призвана не объяснить феномены в том смысле, в каком слово „объяснение“ понималось предшествующей физикой; она призвана связать между собою различные феномены, на первый взгляд независимые друг от друга, показав, что зависимость между ними существует. Бор говорил, что лишь после установления такой зависимости можно будет надеяться на выработку объяснения в том смысле, в каком понимала объяснение традиционная физика. Существовало прежде всего три феномена, которые надлежало привести во взаимную связь. Первым был удивительный факт стабильности атома. Можно разрушить атом химическими процессами, столкновениями, излучением или еще другими способами, однако он снова и снова возвращается к своему изначальному — нормальному — состоянию. Это был факт, не поддававшийся удовлетворительному объяснению в рамках старой физики. Это во-первых. Во-вторых, не поддавались объяснению спектральные закономерности, особенно знаменитый закон Ритца, гласивший, что частота линий в том или ином спектре может быть выражена в виде разницы между термами и что эти термы следует считать характерными признаками атомов анализируемого вещества. И в-третьих, существовали эксперименты Резерфорда, приведшие его к построению своей модели атома.
Итак, эти три группы фактов надлежало связать между собой, и, как известно, идея дискретных стационарных состояний явилась отправной точкой в поисках такой связи. Сперва неизбежно должно было казаться, что поведение атома в дискретном стационарном состоянии можно объяснить методами механики. Это было неизбежно, так как иначе терялась всякая связь с резерфордовской моделью; ведь эксперименты Резерфорда опирались на классическую механику. Кроме того, предстояло как-то связать дискретные стационарные состояния с частотами спектра. Здесь надо было применить открытый Ритцем закон, формулировавшийся теперь уже так, что частота линий спектра, помноженная на коэффициент h, равна разнице между энергиями начального и конечного состояний атома. Закон этот, однако, всего лучше поддавался объяснению, исходя из эйнштейновской идеи светового кванта, не признававшегося Бором. Бор долгое время не был готов поверить в кванты света и соответственно считал свои стационарные состояния как бы некими станциями в движении электрона, который в своем движении вокруг ядра теряет энергию вследствие излучения. Бор предполагал, что в процессе этого излучения электрон в определенных позициях, которые Бор назвал дискретными стационарными состояниями, прекращает излучением По какой-то непонятной причине электрон на этих станциях ничего не излучает, и последняя такая станция есть нормальное состояние атома. Если имеет место излучение, значит, электрон из одного своего стационарного состояния переходит в следующее по порядку.
Согласно такой картине атома, время пребывания электрона в стационарном состоянии представлялось более длительным, чем время, потребное для перехода от одного состояния к другому. Но разумеется, соотношение между этими периодами времени так и не получило отчетливого» определения.
Что можно было сказать о самом излучении? Естественно было приложить к нему общие представления максвелловской теории. С этой точки зрения причиной всех трудностей оказывалось взаимодействие между атомом и излучением. В стационарном состоянии подобное взаимодействие прекращалось, так что представлялся, по-видимому, удобный случай для применения классической механики. Однако применима ли теория Максвелла к данному излучению? Сейчас я сказал бы, что задаваться этим вопросом, собственно, не было надобности. Следовало с большей серьезностью отнестись к световым квантам. Можно было бы считать, что наблюдаемая нами интерференция света возникает вследствие каких-то дополнительных условий движения световых квантов. Смутно вспоминаю об одной моей дискуссии с Вентцелем, когда он указал мне на то, что само движение световых квантов может быть квантованным и что именно этим, видимо, и объясняется интерференция. Бор, конечно, видел вещи иначе. С какой стороны ни подходи, везде мысль наталкивалась на множество трудностей. Мне хотелось бы коснуться этих проблем подробнее.
Начать с того, что в пользу механической модели стационарных состояний говорят веские доводы. Я упомянул об экспериментах Резерфорда. Они легко позволяли привести периодические орбиты электронов внутри атома в связь с квантовыми условиями. Так, идея стационарного состояния хорошо вязалась с идеей определенного рода эллиптической траектории электрона. В своих более ранних лекциях Бор часто приводил изображения электронов, движущихся по своим траекториям вокруг ядра.
В целом ряде важных случаев эта модель отлична функционировала. Прежде всего — в случае водородного спектра. Затем — в зоммерфельдовской теории релятивистской тонкой структуры водородных линий и в так называемом эффекте Штарка, расщеплении спектральных линий в электрическом поле. Словом, имелся весьма обширный материал, из которого, похоже, вытекала правильность сопоставления квантованных электронных орбит с дискретными стационарными состояниями.
Другие доводы говорили за то, что подобная картина не может быть верной. Помню, в одной беседе Штерн рассказал мне, что в 1913 году после выхода в свет первой работы Бора он заявил одному своему другу: «Если эта бессмыслица, которую только что опубликовал Бор, верна, то я больше не хочу быть физиком».
Изложу поэтому теперь неувязки и промахи механической модели. Главная неувязка заключалась, пожалуй, в следующем. Согласно модели, определяемой квантовыми условиями, электрон описывает периодическое движение и, следовательно, с какой-то определенной частотой вращается вокруг ядра. В наблюдениях же эта частота никогда не проявлялась. Ее ни разу не удалось увидеть. Наблюдались лишь разнообразные частоты, определявшиеся перепадами энергий при переходах от одного стационарного состояния к другому. Кроме того, существовала неувязка с вырождением. Зоммерфельд ввел магнитное квантовое число. Если мы имеем магнитное поле определенной направленности, то вследствие этого квантового условия вращательный импульс атома в данном поле должен был бы оказаться равен 1, 0 или –1. Но тогда при введении другого поля с другой направленностью нужно проводить квантование относительно этого другого направления. Однако можно приложить крайне слабое поле сначала в одном, а вскоре затем в другом направлении. Это поле слишком слабо, для того чтобы перевернуть атом. Противоречие с квантовыми условиями оказывается, таким образом, неизбежным [24] .
24
17 Это противоречие снимается в квантовой механике с помощью принципа «суперпозиции состояний». Состояние атома, которое не изменяется, если применить крайне слабое поле, можно, однако, представить как суперпозицию двух состояний с вращательным моментом, определенным относительно двух разнонаправленных осей. Изменение поля изменяет «вес» соответствующего состояния.
Моя первая дискуссия с Нильсом Бором, ровно 50 лет назад, вращалась вокруг этой трудности. Бор прочел в Геттингене лекцию, в которой заявил, что в постоянном электромагнитном поле можно вычислить энергию стационарных состояний в согласии с квантовыми условиями и что проведенное незадолго до того Крамерсом вычисление квадратичного эффекта Штарка содержит, по-видимому, правильные результаты, поскольку в других случаях тот же метод отлично зарекомендовал себя. С другой стороны, между постоянным электрическим полем и медленно изменяющимся электрическим полем различие очень мало.