Школоприколы
Шрифт:
Г. пулей вылетает из класса.
В: (в камеру). Вот так всегда. Сначала хотят познакомиться, а как прихожу – убегают (разводит руками).
Пифагор был прав
Действующие лица: Глеб (Г), Маша (М), учительница (У), Василий (В), уборщица-таджичка (Т).
Место действия: школьный класс.
Реквизит:
Возраст: 12–14 лет.
Сложность постановки: средняя (требуется массовка).
Использование: чтение, театр, съемка.
Школьный класс, урок математики. Рядом с У. сидит В.
У: Сегодня у нас проверяющий из РОНО Василий Сергеевич, кандидат математических наук. Покажем ему, чего мы достигли. Маша, расскажи нам о теореме Пифагора.
М: (выходит к доске, пишет). a2+b2=c2. В прямоугольном треугольнике сумма квадратов катетов равна квадрату гипотенузы.
В: Правильно. Но я вижу, не все в вашем классе внимательно слушают урок (показывает на Г. на последней парте).
У: Это Глеб, двоечник, весь урок отвлекается, играет на планшете…
В: Глеб, что ты можешь добавить к ответу Маши?
Г: (с удивлением отрывается от планшета). Неправильно она ответила. Не сумма, а разность.
У: Да что ты говоришь! Может, докажешь?
Г: (нехотя выходит к доске, пишет, см. рис. 1). Да легко. Берем бесконечно малые приращения катетов a, b и гипотенузы с, сохраняющие подобие с исходным прямоугольником и получаем такие дифференциальные соотношения:
Откуда
Применяя формулу разделения переменных, получаем диффур:
сdc = ada – bdb [3]
Интегрируем:
c2=a2—b2 [6]
В: (обалдело смотрит на доску). Это неверная формула! Сейчас я найду ошибку…
Г: Ищите. Я пока поиграю (уходит к своей парте).
Смена
Т: Звонок давно, последний урок. Что не выходите?
В: (с взъерошенными волосами и безумными глазами). Не мешайте, мы здесь решаем мировую проблему математики! Неужели Пифагор ошибался?!
Т: (быстро просматривает «доказательство» Г.). В дифференциальном уравнении неправильно разделены переменные. Будет плюс, а не минус (исправляет минус на плюс в 3-й формуле). Давайте выметайтесь все. Мне убираться надо.
Практическое доказательство
Действующие лица: Глеб (Г), Саша (С).
Место действия: квартира.
Реквизит: линейка, мухобойка, ножницы.
Возраст: 11–14 лет.
Сложность постановки: легкая.
Использование: чтение, театр, съемка.
Лето, квартира, С. и Г. сидят за столом.
С: Меня прикрепили к тебе подтянуть геометрию и я это сделаю. Времени у нас много – все летние каникулы. Начнем с азов. Любые три точки всегда лежат в одной плоскости.
Г: Доказательство?
С: Нет. Это аксиома.
Г: (водит руками в воздухе). Что-то мне не верится (осматривается, берет мухобойку). Смотри, ведь плоскость? А мухи ведь как точки? Давай проверим твое утверждение (передает мухобойку С.)
С. бьет мухобойкой.
Г: (осматривает мухобойку). Две мухи. Не подтверждено.
С. бьет мухобойкой.
Г: (осматривает мухобойку). Вообще одна.
С. бьет мухобойкой.
Г: (осматривает мухобойку). Три. Но это может быть случайность. Нужно набрать статистику.
Смена картинки. Утомленный С. полулежит на диване.
С: Ох, утомился я с этой проверкой!
Г: (подходит к С. с ножницами и линейкой). Теперь осталось доказать, что пифагоровы штаны во все стороны равны. Ты не Пифагор, но штаны снимай – отрежем как надо и измерять будем!
С. обалдело смотрит на Г.
Логика невозможного
Действующие лица: Глеб (Г), учитель (У).