Синергетика и прогнозы будущего
Шрифт:
Одна из причин резонанса, который получила нелинейная динамика, состоит в том, что она дает новый взгляд на развитие науки, на возможность описать явления природы. Фундаментальный вопрос состоит в том, почему, обладая весьма скромными возможностями, мы неплохо ориентируемся и во многом успели разобраться за последние 40 веков? Почему иногда среди огромного множества сложных взаимодействующих факторов и сотен тысяч переменных удается выделить наиболее важные процессы и ключевые факторы? Ответ нелинейной динамики состоит в том, что во множестве случаев происходит самоорганизация, связанная с выделением параметров порядка. И нелинейную среду, потенциально
Несмотря на, казалось бы, внутринаучный характер проблемы выделения параметров порядка, она оказывается исключительно важной. Подходы, развиваемые нелинейной динамикой, дают надежду на то, что можно успешно действовать в океане уже имеющихся знаний, проектов, сведений что "информационный джинн" может быть укрощен. Библейская мудрость толкует про время "разбрасывать камни" и "время собирать камни". Если XX в. прошел под знаком "разбрасывания камней", рождения сотен научных направлений на стыках научных дисциплин, то в XXI в. будущее науки будет определяться тем, насколько успешным окажется междисциплинарный синтез, насколько удачно будут "собраны камни".
Нелинейная наука дает для этого хорошие шансы. Шансы на то, что огромный потенциал, накопленный математикой и естественными науками, окажется востребованным и полезным при ответе на ключевые вопросы, касающиеся нашего бытия. Дает шанс гуманитарным наукам на то, что мы, наконец, научимся извлекать уроки из истории и пользоваться разумом там, где это более всего необходимо. Таковы ожидания.
Цивилизация стоит на пороге информационного будущего. "Виртуальная реальность" со средствами массовой информации, электронной почтой, глобальными компьютерными сетями уже существенно изменила наш мир. Моделирование, имитация, компьютерные игры, средства представления информации вышли на первый план. Но это именно те средства, которыми первой начала пользоваться нелинейная наука. И от нее ждут новых идей в строительстве "информационного будущего".
Кроме того, классическая и неклассическая наука обычно имела дело с одним уровнем описания, атомным или ядерным, индивидуальным или социальным. Однако высокие технологии, с которыми связываются надежды на выживание, обычно имеют дело с несколькими уровнями организации материи. Лазеры заставляют "работать" на макроуровне квантовые эффекты. Технологии создания желаемых микроструктур уже сейчас открывают путь к использованию высокотемпературной сверхпроводимости и к новым поколениям материалов. Открываются новые пути к воплощению "виртуальной реальности", рожденной за экранами дисплеев и в лабораториях, в обыденную жизнь. То же касается социальных технологий. Технологические установки и национальные традиции, касающиеся индивидуальной психологии, структуры личности, позволили реализовать ряду государств "экономическое чудо" за весьма небольшой срок. И вновь наибольший опыт описания и анализа процессов, развивающихся и взаимодействующих на нескольких структурных уровнях, накоплен нелинейной наукой.
Сейчас трудно очертить контуры "нелинейной парадигмы" или "нелинейной познавательной модели". Порой она кажется гигантской воронкой, вбирающей задачи, методы, идеи многих различных дисциплин,
Нелинейная наука дает надежду на построение глубоких конкретных междисциплинарных подходов. Эти подходы, может быть, позволят избежать научному сообществу участи строителей Вавилонской башни. И это важно.
1. Николис Г., Пригожин И. Самоорганизация в неравновесных системах. М.: Мир, 1979.
2. Хакен Г. Синергетика. М.: Мир, 1980.
3. Самарский А.А., Галактионов В.А., Курдюмов С.П., Михайлов А.П. Режимы с обострением в задачах для квазилинейных параболических уравнений. М.: Наука, 1987.
4. Современные проблемы математики//Новейшие достижения. Серия: "Итоги науки и техники". М.: ВИНИТИ, 1986 (1987). Т.28.
5. Ахромеева Т.С., Курдюмов С.П., Малинецкий Г.Г., Самарский А.А. Нестационарные структуры и диффузионный хаос. М.: Наука, 1992.
6. Новое в синергетике. Загадки мира неравновесных структур. М.: Наука, 1996.
7. Компьютеры, модели, вычислительный эксперимент. М.: Наука, 1988.
8. Компьютеры и нелинейные явления. М.: Наука, 1988.
9. Наука, технология, вычислительный эксперимент. М.: Наука, 1993.
10. Чайковский Ю.В. Познавательные модели, плюрализм и выживание// Путь. 1992. N1, c.62-108.
11. Артур У. Механизмы положительной обратной связи в экономике// В мире науки. 1990. N4.
12. Лотман Ю.М. Беседы о русской культуре. Быт и традиции русского дворянства (XVIII – начала XIX века). Санкт-Петербург: Искусство СПТ, 1994, c. 136.
13. Turing A. The chemical basis of morphogenesis// Phyl. Trans. Roy. Soc. L. 1952. V.237, p.137-230.
14. Mandelbrot B.B. Fractals: form chance and dimension. San Francisco.: Freeman Comp. 1977.
15. Малинецкий Г.Г. Хаос, структуры, вычислительный эксперимент. М.: Наука, 1997.
16. Гленсдорф П., Пригожин И. Термодинамическая теория структуры, устойчивости и флуктуаций. М.: Мир, 1973.
17. Фракталы в физике. М.: Мир, 1988.
18. Малинецкий Г.Г. Проект "Информхаос". Препринт РОУ. 1992.
19. Петров А.А. Экономика. Модели. Вычислительный эксперимент. М.: Наука, 1996.
20. Андрианов И.В., Маневич Асимптология: идеи, методы, результаты. М.: Аслан, 1994.
21. Данилов Ю.В. Льюис Кэррол как нелинейное явление// Изв. ВУЗов. Прикладная нелинейная динамика. 1996. Т.4. N.1, c.119-125.
22. Короновский А.А., Трубецков Д.И. Нелинейная динамика в действии: как идеи нелинейной динамики проникают в экологию, экономику и социальные науки. Саратов: ГосУНЦ "Колледж", 1995.
23. Пойзнер Б.Н. О субъекте самоорганизации// Изв. ВУЗов. Прикладная нелинейная динамика. 1996. Т.4. N4.
24. Самарский А.А., Михайлов А.П. Математическое моделирование. М.: Наука, 1997.
25. Fraser A.M., Swinney H.L. Independent coordinates for strange attractors from mutual information// Phys. Rev. A. 1986. V.33. N2, p.1131-1140.
26. Малинецкий Г.Г., Рузмайкин А.А., Самарский А.А. Модель долговременных вариаций солнечной активности. Препринт ИПМ АН СССР, 1986, N170.
27. Dynamic pattern formation in chemistry and mathematics. Aesthetics in the sciences. Dortmund.: Max-Plank-Instur fur Ernahrungsphysio-lo-gie, 1988.