Чтение онлайн

на главную - закладки

Жанры

Скрытая реальность. Параллельные миры и глубинные законы космоса
Шрифт:

Чтобы гарантировать реализацию каждого возможного значения космологической постоянной, необходимо иметь мультивселенную, в которой по-меньшей мере 10124 разных вселенных. Но как и в ситуации с актёрами необходимо учитывать возможные повторения — вселенные с одинаковыми значениями космологической постоянной. Чтобы каждое значение космологической постоянной наверняка было реализовано, следует располагать мультивселенной с числом вселенных, гораздо большим, чем 10124, например в миллион раз большим, что даст красивую цифру 10130. Я так непринуждённо жонглирую этими числами, потому что они настолько велики, что точное значение вряд ли является важным. Ни один из известных примеров чего-либо, будь то число клеток в человеческом теле (1013), число секунд, прошедших с момента Большого взрыва (1018),

число фотонов в наблюдаемой части Вселенной (1088), даже близко не похоже на воображаемое число вселенных. Подводя итог, можно сказать, что подход Вайнберга для объяснения значения космологической постоянной применим, только когда мы являемся частью мультивселенной, содержащей огромное число различных вселенных; их космологические постоянные должны принимать примерно 10124 различных значений. Только в случае такого гигантского количества вселенных существует вероятность, что среди них найдётся одна с нашим значением космологической постоянной.

Здесь возникает вопрос, есть ли теоретические модели, которые естественным образом приводят к такому захватывающему изобилию вселенных с разными космологическими постоянными?{54}

От недостатка к достоинству

Да, есть. Мы уже встречались с такой моделью в предыдущей главе. Подсчёт различных возможных форм дополнительных измерений в теории струн, с учётом пронизывающих их потоков, дал примерно 10500. Это намного больше, чем 10124. Даже умножив 10124 на несколько сот порядков величины, всё равно 10500 будет значительно больше. Вычтем 10124 из 10500, потом ещё раз, и ещё, и так миллиард раз подряд, и всё равно это будет почти незаметно. В результате получится примерно всё то же 10500.

Важно, что космологическая постоянная действительно варьируется от одной такой вселенной к другой. Подобно тому как магнитный поток несёт энергию (и может двигать предметы), потоки внутри дырок в пространствах Калаби — Яу обладают энергией, величина которой очень чувствительна к геометрическим особенностям данного пространства. Если имеются два разных пространства Калаби — Яу с разными потоками, проходящими сквозь разные дырки, то их энергии, как правило, будут отличаться. Поскольку заданное пространство Калаби — Яу прикреплено к каждой точке трёх обычных измерений пространства, подобно петелькам ворса, прикреплённого к большому основанию ковра, энергия, содержащаяся в данном пространстве, будет равномерно заполнять три больших измерения, подобно тому как смачивание индивидуальных волокон в ворсе ковра приведёт к утяжелению всего ковра. Таким образом, какое бы из 10500 различных одетых пространств Калаби — Яу не определяло геометрию дополнительных измерений, энергия, которой оно обладает, даст вклад в космологическую постоянную. Результаты, полученные Рафаэлем Буссо и Джо Польчински, дают количественную оценку этой ситуации. Они показали, что различные космологические постоянные, к которым приводят приблизительно 10500 различных возможных пространств дополнительных измерений, равномерно распределены по широкому диапазону значений.

Как по заказу! Наличие 10500 отметок, распределённых в диапазоне от 0 до 1, гарантирует, что найдётся очень много со значениями, лежащими совсем рядом с теми значениями космологической постоянной, которые астрономы измеряют последние десяток лет. Возможно, что найти точные примеры среди 10500 вариантов не получится, потому что даже самые быстрые современные компьютеры тратят одну секунду на анализ каждой формы дополнительных измерений, так что через миллиард лет будут рассмотрены лишь какие-то жалкие 1023 примеров. Однако это сильные доводы в пользу того, что они существуют.

Конечно, набор из 10500 разных форм дополнительных измерений очень далёк от той единственной вселенной, о которой мы мечтали в теории струн. Тем, кто верит в мечту Эйнштейна о единой теории поля, описывающей единственную вселенную — нашу, — эти рассуждения причиняют сильный дискомфорт. Однако анализ вопроса о космологической постоянной представляет ситуацию в ином свете. Вместо того чтобы отчаиваться из-за того, что, по всей видимости, единственной вселенной не получится, нам следует радоваться: благодаря теории струн самая невероятная часть из объяснения Вайнбергом малости значения космологической постоянной — требование наличия огромного количества разных вселенных, значительно превышающего 10124 — неожиданно становится правдоподобной.

Заключительный шаг. Резюме

Похоже, что разные части этой захватывающей истории начинают стыковаться воедино. Однако в рассуждениях всё ещё остаётся некоторая брешь. Одно дело, когда из теории струн возникает огромное число различных вселенных. Но совсем другое дело — требовать, чтобы теория струн гарантировано обеспечивала, чтобы все возможные возникающие вселенные действительно существовали где-то там, являясь параллельными мирами внутри гигантской мультивселенной. Наиболее образно эту ситуацию охарактеризовал Леонард Сасскинд, вдохновлённый новаторской работой Шамита Качру, Ренаты Каллош, Андрея Линде и Сандипа Триведи, — если в ткань теории вплести вечную инфляцию, то брешь может затянуться.{55}

Я сейчас объясню этот заключительный шаг, но если вы уже устали и жаждете финала истории, то это можно сделать в трёх предложениях. Инфляционная мультивселенная — постоянно расширяющийся, похожий на швейцарский сыр, космос — содержит огромное, постоянно увеличивающееся число дочерних вселенных. Идея в том, что если объединить инфляционную космологию с теорией струн, то процесс вечной инфляции орошает 10500 возможных форм дополнительных измерений, возникающих в теории струн, привитых на пузырьки-вселенные, что даёт космологический способ реализации всех возможностей. Согласно этой логике, мы живём в пузырьке с такими дополнительными измерениями, такой космологической постоянной и всем остальным, которые благоприятствуют нашей форме жизни и согласуются с наблюдениями.

В оставшейся части главы я изложу это более подробно, поэтому если вам не терпится поскорее продвинуться дальше, спокойно переходите к последнему разделу.

Струнный ландшафт

Давайте вспомним аналогию, которую я использовал в главе 3 для объяснения инфляционной космологии. Вершины гор соответствовали наивысшим значениям энергии поля инфлатона в пространстве, а процесс скатывания вниз и достижение положения равновесия в низшей точке у подножия горы соответствовали тому, как инфлатон отдаёт свою энергию, которая при этом процессе преобразуется в частицы вещества и излучение.

А теперь рассмотрим заново три положения из этой аналогии уже с учётом полученных знаний. Во-первых, мы узнали, что инфлатон не единственный источник энергии, способной заполнять пространство; свои вклады дают также квантовые флуктуации всех других полей — электромагнитного, ядерного и так далее. Поэтому в используемой нами аналогии высота горы будет соответствовать совместной энергии от всех источников, однородно заполняющей всё пространство.

Во-вторых, в исходной аналогии высота подножия горы, куда в итоге скатывается инфлатон, считалась «уровнем моря», нулевой высотой, что означало, что инфлатон отдал всю свою энергию (и давление). Но после пересмотра высота подножия горы должна соответствовать совместной энергии от всех источников, заполняющей пространство, после завершения процесса инфляции. Тем самым мы получаем другой способ взглянуть на космологическую постоянную пузырька-вселенной. Таким образом, загадка объяснения нашей космологической постоянной переформулируется в загадку объяснения высоты подножия горы — почему она так близко к уровню моря, но не совпадает с ним?

В-третьих, исходно рассматривался простейший горный рельеф, когда вершина гладко переходит в основание горы, куда в итоге попадает инфлатон (см. рис. 3.1). Затем были учтены другие составляющие (поля Хиггса), эволюция которых и окончательные положения равновесия будут влиять на физические свойства и проявление пузырьков-вселенных (см. рис. 3.5). В теории струн диапазон возможных вселенных становится ещё богаче. Форма дополнительных измерений определяет физические свойства внутри конкретного пузырька-вселенной, поэтому возможные «положения равновесия», показанные как долины на рис. 3.6б, теперь будут соответствовать возможным формам дополнительных измерений. Чтобы разместить 10500 возможных форм для дополнительных измерений горный пейзаж должен быть с размахом дополнен долинами, террасами, обнажениями пород, подобно тому как показано на рис. 6.4. Любое место в горном рельефе, куда может скатиться шарик, соответствует некоторой форме дополнительных измерений; высота этого места определяет космологическую постоянную соответствующего пузырька-вселенной. На рис. 6.4 показано то, что называется струнным ландшафтом.

Поделиться:
Популярные книги

Протокол "Наследник"

Лисина Александра
1. Гибрид
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Протокол Наследник

Последняя Арена 11

Греков Сергей
11. Последняя Арена
Фантастика:
фэнтези
боевая фантастика
рпг
5.00
рейтинг книги
Последняя Арена 11

Воин

Бубела Олег Николаевич
2. Совсем не герой
Фантастика:
фэнтези
попаданцы
9.25
рейтинг книги
Воин

Царь поневоле. Том 2

Распопов Дмитрий Викторович
5. Фараон
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Царь поневоле. Том 2

Возвышение Меркурия. Книга 12

Кронос Александр
12. Меркурий
Фантастика:
героическая фантастика
попаданцы
аниме
5.00
рейтинг книги
Возвышение Меркурия. Книга 12

Авиатор: назад в СССР 10

Дорин Михаил
10. Покоряя небо
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Авиатор: назад в СССР 10

Кровь на клинке

Трофимов Ерофей
3. Шатун
Фантастика:
боевая фантастика
попаданцы
альтернативная история
6.40
рейтинг книги
Кровь на клинке

Я тебя не предавал

Бигси Анна
2. Ворон
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Я тебя не предавал

На границе империй. Том 5

INDIGO
5. Фортуна дама переменчивая
Фантастика:
боевая фантастика
попаданцы
7.50
рейтинг книги
На границе империй. Том 5

Аристократ из прошлого тысячелетия

Еслер Андрей
3. Соприкосновение миров
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Аристократ из прошлого тысячелетия

Para bellum

Ланцов Михаил Алексеевич
4. Фрунзе
Фантастика:
попаданцы
альтернативная история
6.60
рейтинг книги
Para bellum

Кодекс Охотника. Книга IX

Винокуров Юрий
9. Кодекс Охотника
Фантастика:
боевая фантастика
городское фэнтези
попаданцы
5.00
рейтинг книги
Кодекс Охотника. Книга IX

Сердце Дракона. Том 11

Клеванский Кирилл Сергеевич
11. Сердце дракона
Фантастика:
фэнтези
героическая фантастика
боевая фантастика
6.50
рейтинг книги
Сердце Дракона. Том 11

Купеческая дочь замуж не желает

Шах Ольга
Фантастика:
фэнтези
6.89
рейтинг книги
Купеческая дочь замуж не желает