Чтение онлайн

на главную

Жанры

Слепой часовщик

Докинз Ричард

Шрифт:

Имеется фундаментальное различие между этими двумя направлениями передачи ДНК-информации: вертикальным и горизонтальным. Вертикальная передача производится от клетки к клетке, которые в конечном итоге порождают яйцеклетку или спермий. То есть, информация передается вертикально следующему поколению; далее, опять же — вертикально, к неограниченному числу будущих поколений. Я буду называть эту ДНК «архивной». Она потенциально бессмертна. Последовательность клеток, по которым путешествует архивная ДНК, называются зародышевой линией. Зародышевая линия — это набор клеток внутри тела, являющийся предком для сперматозоидов или яйцеклеток, и следовательно — предком будущих поколений. ДНК-информация может быть передана «вбок» или горизонтально: в ДНК клеток «не зародышевой линии», таких, как клетки печени или кожи; а самих этих клетках — в РНК, и далее к белку и различным эффектам эмбрионального развития, и следовательно — отразится на форме и поведении взрослой особи. Можно уподобить горизонтальную и вертикальную передачу

передаче информации двум подпрограммам под названиями РАЗВИТИЕ и ВОСПРОИЗВОДСТВО третьей главы.

Естественный отбор — это есть дифференцированный успех конкурирующих ДНК в деле вертикальной передачи своей информации в архив вида. Под «конкурирующей ДНК», понимается альтернативное содержимое неких конкретных адресов в хромосомах вида. Некоторые гены сохраняются в архиве успешнее конкурирующих. Хотя вертикальная передача в архив вида — это в конечном счёте и есть успех, но факторами успеха обычно являются те воздействия, которое гены оказывают на тела посредством горизонтальной передачи — точно так же, как в компьютерной модели биоморф. Например, предположим, что у тигров имеется специфический ген, который, посредством своего горизонтального влияния на клетки челюстей, заставляет зубы быть немного острее тех, что выросли бы под влиянием конкурирующего гена. Тигр с особо острыми зубами может убивать добычу эффективнее нормального тигра; следовательно, у него будет больше пищи, а значит — больше потомков; другими словами — он передаст вертикально больше копий гена, делающего зубы особо острыми. При этом он, конечно, передаст все свои гены, но ген острых зубов будет наличествовать в основном в телах острозубых тигров. Передаваясь вертикально, ген извлекает выгоду из своих эффектов, которые он оказывает на серию тел.

Эффективность ДНК как среды архивирования весьма впечатляет — по своей способности сохранения сообщений она далеко превосходит каменные скрижали. Коровы и растения гороха (как собственно, и все мы) имеют почти идентичный ген, называемый гистоном H4. Его ДНК текст имеет длину 306 символов. Мы не можем утверждать, что он занимает одни и те же адреса у всех видов, потому что мы не можем осмысленно сравнивать адресные метки у разных видов. Но мы можем утверждать, что имеется отрезок 306 символов у коров, который фактически идентичен отрезку из 306 символов у гороха. Коровы и горох отличаются друг от друга только двумя символами из эти 306. Мы не знаем точно, как давно жил общий предок коров и гороха, но окаменелости свидетельствуют, что это было где-нибудь между 1000 и 2000 миллионами лет назад. Ну скажем, 1.5 миллиарда лет назад. За это невообразимо долгое (для людей) время, каждая из двух линий, ответвившаяся от этого отдалённого предка, сохранила 305 из этих 306 символов (в среднем: могло быть так, что одна линия сохранила все 306, а другая сохранила 304). Буквы, высеченные на могильном камне, станут нечитабельными за несколько сот лет.

Способ сохранения ДНК-документа «гистон-H4» производит даже большее впечатление, потому что, в отличие от каменных скрижалей, хранит текст вовсе не один и тот же физический носитель. Он неоднократно копируется и перекопируется в ходе смены поколений — подобно Еврейским священным писаниям, которые ритуально копировались писарями каждые 80 лет, дабы уберечь их от изнашивания. Трудно с точностью оценить, сколько раз документ «гистон H4», был перекопирован в линии, ведущей к коровам от общего предка с горохом, но вероятно, порядка 20 миллиардов раз. Столь же трудно найти мерило, пригодное для измерения степени защиты более 99 процентов информации в ходе 20 миллиардов последовательных копирований. Мы попробуем использовать версию игры «бабушкин шёпот». Представьте себе 20 миллиардов машинисток, сидящих в ряд. Этот ряд машинисток обогнул бы Землю по экватору 500 раз. Первая машинистка печатает страницу документа и вручает её соседке. Она копирует её и передает эту копию следующей. Она копирует её снова и передаёт следующей, и так далее. В конечном счёте, сообщение достигает конца ряда, и мы читаем его (точнее — читают наши 12000-е правнуки — если все машинистки печатают со скоростью, типичной для хорошего секретаря). Насколько верной была бы последняя копия в сравнении с первоначальным сообщением? Чтобы ответить на этот вопрос, нам нужно сделать некоторые предположения насчёт точности работы машинисток. Давайте зайдём с обратной стороны: насколько точна должна быть каждая машинистка, чтобы достичь точности ДНК? Ответ до смешного неправдоподобен. Но если уж вы настаиваете, то каждая машинистка должна была бы делать только одну ошибку на примерно триллион знаков — то есть, делать единственную ошибку, перепечатав Библию 250 000 раз подряд. Хорошая машинистка в реальной жизни делает примерно одну ошибку на страницу текста. Это примерно в полмиллиарда раз больше темпа ошибок при копировании гена гистона H4. В ряду реальных машинисток текст бы деградировал на 1 % уже на 20-м члене нашего ряда. К 10000-му члену ряда выжило бы менее одного процента первоначального текста. Этот момент практически полной деградации был бы достигнут прежде, чем 99.9995 процентов наших машинисток даже увидели бы его.

Эта аналогия немного лукава, но в интересном и красноречивом отношении. Я дал представление о мере ошибок копирования. Но документ «гистон H4» не только

копировался, но и подвергался естественному отбору. Гистон крайне важен для выживания — он используется в построении структуры хромосом. Возможно, что при копировании гена «гистона H4» происходило больше ошибок копирования, но мутантные организмы не выживали или, по крайней мере — не размножались. Чтобы сделать сравнение более точным, нам придется допустить, что в стул каждой машинистки встроено ружьё, подключенное так, как только она делает ошибку, так тотчас же оказывается застреленной, а на её место принимается запасная машинистка (слабонервный читатель может представить себе пружинный эжектор, мягко катапультирующую бракоделицу из ряда, но оружьё дает более реалистическую картину естественного отбора [13] ).

13

Мне кажется, что более реалистичную картину естественного отбора дало бы уничтожение ошибочной бумаги, а не ошибающейся машинистки — А.П.

Итак, этот метод измерения стабильности ДНК, состоящий в подсчёте количества изменений, фактически произошедших за какое-то геологическое время, отражает как подлинную точность копирования, так и фильтрующую эффективность естественного отбора. Мы видим лишь потомков успешных изменений ДНК. Носителей же изменений, которые привели к смерти, очевидно нет с нами. Можем ли мы измерять точность самого копирования — до того, как естественный отбор начнёт работать над каждым новым поколением генов? Да, и обратная величина этого показателя известна как частота мутаций, которая может быть измерена. Оказывается, вероятность ошибки копирования любого конкретного символа в любом акте копирования — несколько более одного случая на миллиард. Разница между частотой мутаций и более низкой частотой фактически произошедших изменений в гене гистона в ходе эволюции, является мерой эффективности естественного отбора в сохранении этого древнего документа.

Стабильность гена гистона за прошедшие эпохи исключительна по генетическим стандартам. Другие гены изменяются с более высокой частотой — возможно, потому, что естественный отбор более терпим к вариациям в них. Например, гены, кодирующие белки — фибринопептиды изменяются в ходе эволюции с частотой, близкой к базовой частоте мутаций. Вероятно, это означает, что ошибки в деталях этих белков (они вырабатываются при свёртывании крови) не имеют большого значения для организма. Гены гемоглобина меняются с большей частотой, чем гистоны, и меньшей, чем фибринопептиды. Возможно, терпимость естественного отбора к их ошибкам промежуточна. Гемоглобин играет важнейшую роль в крови, и его детали действительно важны, но его несколько альтернативных вариантов, похоже, одинаково хорошо способны к выполнению этой работы.

А вот здесь мы столкнулись с чем-то несколько парадоксальным — пока не подумаем об этом чуть больше. Самые медленно эволюционирующие молекулы, такие, как гистоны, — наиболее подчинены естественному отбору. Фибринопептиды эволюционируют наиболее быстро, потому что естественный отбор почти полностью их игнорирует. Они вольны изменяться с частотой мутаций. Причина кажущейся парадоксальности в том, что мы делаем слишком сильный акцент на естественном отборе, как движущей силе эволюции — и следовательно, мы ожидаем, что при отсутствии естественного отбора не будет никакой эволюции. И наоборот, мы ожидаем, что сильное «давление отбора», приводит к быстрой эволюции. Но здесь мы находим, что естественный отбор тормозит эволюцию. Базовая скорость эволюции, в отсутствии естественного отбора, максимальна и совпадает с частотой мутаций.

На деле это никакой не парадокс. Подумав об этом получше, мы поймём, что иначе и быть не могло. Темп эволюции посредством естественного отбора не может быть выше частоты мутаций, поскольку мутации — в конце концов, единственный способ поставки новых вариаций виду. Всё, что может делать естественный отбор — это принимать одни новые вариации и отклонять другие. Частота мутаций — это верхний предел темпа эволюции. Фактически естественный отбор больше нацелен на предотвращение эволюционных изменений, чем на продвижение их. Я не спешу настаивать, что естественный отбор — чисто консервативный процесс. Он также может и созидать; как именно — будет объяснено в седьмой главе.

Даже частота мутаций изрядно медленна. Это другое подтверждение того, что даже и без естественного отбора, успешность ДНК в деле точного сохранения архивных данных представляется очень впечатляющей. Консервативная оценка показывает, что даже при отсутствии естественного отбора, ДНК копируется настолько точно, что потребуется пять миллионов поколений репликации, чтобы исказить 1 процент символов. Наши гипотетические машинистки безнадёжно ошибочнее ДНК, даже если нет никакого естественного отбора. Чтобы соответствовать точности самой ДНК (без естественного отбора), каждая машинистка должна быть способной напечатать весь Новый Завет только с одной ошибкой. То есть, они должны быть примерно в 450 раз точнее типичного живого секретаря. Очевидно, что это намного меньше вышеприведённой оценки в полмиллиарда раз, в которые копирование гена гистона H4 (после фильтрации естественным отбором) точнее работы типичного секретаря; но это тем не менее очень внушительное число.

Поделиться:
Популярные книги

Назад в СССР: 1986 Книга 5

Гаусс Максим
5. Спасти ЧАЭС
Фантастика:
попаданцы
альтернативная история
5.75
рейтинг книги
Назад в СССР: 1986 Книга 5

Неудержимый. Книга III

Боярский Андрей
3. Неудержимый
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Неудержимый. Книга III

Мастер 3

Чащин Валерий
3. Мастер
Фантастика:
героическая фантастика
попаданцы
аниме
5.00
рейтинг книги
Мастер 3

Конструктор

Семин Никита
1. Переломный век
Фантастика:
попаданцы
альтернативная история
4.50
рейтинг книги
Конструктор

Наследник Четырех

Вяч Павел
5. Игра топа
Фантастика:
героическая фантастика
рпг
6.75
рейтинг книги
Наследник Четырех

Чехов. Книга 2

Гоблин (MeXXanik)
2. Адвокат Чехов
Фантастика:
фэнтези
альтернативная история
аниме
5.00
рейтинг книги
Чехов. Книга 2

Легат

Прокофьев Роман Юрьевич
6. Стеллар
Фантастика:
боевая фантастика
рпг
6.73
рейтинг книги
Легат

Земная жена на экспорт

Шах Ольга
Любовные романы:
любовно-фантастические романы
5.57
рейтинг книги
Земная жена на экспорт

Идеальный мир для Лекаря 11

Сапфир Олег
11. Лекарь
Фантастика:
фэнтези
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 11

Столичный доктор. Том II

Вязовский Алексей
2. Столичный доктор
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Столичный доктор. Том II

Столичный доктор. Том III

Вязовский Алексей
3. Столичный доктор
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Столичный доктор. Том III

Пропала, или Как влюбить в себя жену

Юнина Наталья
2. Исцели меня
Любовные романы:
современные любовные романы
6.70
рейтинг книги
Пропала, или Как влюбить в себя жену

Нефилим

Демиров Леонид
4. Мания крафта
Фантастика:
фэнтези
боевая фантастика
рпг
7.64
рейтинг книги
Нефилим

Бывший муж

Рузанова Ольга
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Бывший муж