Чтение онлайн

на главную - закладки

Жанры

Слепой часовщик

Докинз Ричард

Шрифт:

Однако я был несправедлив к моим машинисткам. Я исходил из того, что они неспособны замечать свои ошибки и исправлять их; т. е. исходил из полного отсутствия контроля ошибок. В действительности, они, конечно, корректируют ошибки. Поэтому мой ряд из миллиардов машинисток не позволил бы первоначальному сообщению выродится так просто, как я изобразил. Механизм копирования ДНК автоматически производит примерно такое же исправление ошибок. Если бы этого не происходило, то было бы невозможно достичь сколь-нибудь близко той громадной точности, которую я описал. В процедуре копирования ДНК предусмотрены различные методы корректировки ошибок. Они тем более необходимы, что буквы ДНК-кода ни в коем случае не незыблемы — как иероглифы, высеченные в граните. Причастные к этим процессам молекулы настолько малы (помните, сколько экземпляров Нового Завета они умещают на булавочной головке?), что подвержены постоянным нападкам

обычной тепловой толчеи молекул. В ДНК всё течёт и меняется — происходит кругооборот букв в сообщениях. В каждой клетке человека в день деградирует примерно 5000 символов ДНК-кода, которые немедленно заменяются ремонтными механизмами. Если бы ремонтные службы не работали бы неустанно, то сообщение постепенно распалось бы. Исправление ошибок только что скопированного текста — лишь частный случай текущей ремонтной работы. И именно такая корректура обеспечивает эту замечательную точность ДНК в надёжности хранения информации.

Мы видели, что ДНК молекулы — это центр впечатляющей информационной технологии. Они способны упаковывать огромное количество точной цифровой информации в очень маленькое пространство и хранить её с удивительно малым количеством ошибок, но тем не менее, некоторые ошибки случаются — за очень долгое время, измеряемое миллионами лет. О чём говорят эти факты? Они говорят о центральной истине про жизнь на Земле, истине, которую я упоминал в открывающем главу абзаце про семена ивы. Эта истина гласит, что живые организмы существуют ради ДНК, а не для чего-то ещё. Пока это не очевидно, но я надеюсь убедить вас в этом далее. Сообщения, содержащиеся в молекулах ДНК практически вечны — в сравнении с временными масштабами сроков жизни индивидуумов. Сроки жизни ДНК-сообщений (плюс-минус несколько мутаций) измеряются миллионами и сотням миллионов лет; или, другими словами, от 10000 сроков жизни индивидуумов, до триллиона. Каждый индивидуальный организм должен рассматриваться как временное транспортное средство, в котором ДНК-сообщения проводят крошечную долю своих геологических сроков жизни.

Мир полон существующих вещей…! Это бесспорно, но о чём это говорит? Вещи существуют или потому что только что появились, или потому, что их особенности сделали их разрушение в прошлом маловероятным. Скалы появляются нечасто, но они существуют благодаря твёрдости и долговечности. Если бы они не были таковыми, то они были бы не скалами, а песком. Собственно говоря, некоторые из них им и является, почему и существуют пляжи! Это долговечные сущности, которые существуют как и скалы. С другой стороны, росинки существуют не потому что они долговечны, а потому, что они только что появились и не успели ещё испариться. Видно, что существуют два способа существования: способ росинок, который можно вкратце назвать как «высоковероятность появления, но низкая долговечность»; и способ скал, который можно вкратце назвать как «маловероятность появления, но высокая вероятность длительного существования». Скалы обладают долговечностью, а росинки «появлябельностью» (Я пытался придумать менее корявое слово, но не смог).

ДНК берёт лучшее от обеих миров. Сами молекулы ДНК, как физические объекты, похожи на росинки. При правильных условиях они появляются часто, но ни одна из них не существует долго — все они разрушаются за несколько месяцев. Они не долговечны, как скалы. Но информация, которую они несут в последовательности своих кодов, столь же долговечна, как самые твёрдые из скал. У них есть то, что требуется для их существования в течение миллионов лет, и именно поэтому они всё ещё здесь. Их принципиальное отличие от росинок состоит в том, что старые росинки не рождают новые. Росинки, несомненно, похожи одна на другую, но у них нет особенного сходства со своими «родительскими» росинками. В отличие от молекул ДНК, они не формируют наследственных линий, и следовательно — не могут передавать сообщения. Росинки появляются на свет самопроизвольным зарождением, ДНК-сообщения — репликацией.

Такой трюизм, как «мир полон вещами, которые обладают свойствами, позволяющими им находиться в этом мире», выглядит банальным, почти глупым, пока мы не попытаемся применить его к особому виду долговечности — долговечности в форме линии множества копий. Долговечность ДНК-сообщений отлична и от долговечности скал, и от различного вида «появлябельностей», типа росинок. Для молекул ДНК это высказывание про «свойства, позволяющие им находиться в мире», совсем не очевидно и тавтологично. «Свойства, позволяющие им находиться в мире», оказывается, включают в себя способность строить механизмы, подобные вам и мне — наиболее сложные вещи в известной нам вселенной. Давайте посмотрим, почему это может быть так.

Принципиально важно то, что вышеуказанные свойства ДНК оказались основными ингредиентами, необходимыми

для организации процесса нарастающего отбора. В наших компьютерных моделях третьей главы, мы преднамеренно включали в модель основные компоненты нарастающего отбора. Чтобы нарастающий отбор действительно возник в мире, должны появиться некоторые сущности, свойства которых реализуют эти основные компоненты. Давайте посмотрим, что это за компоненты. При этом мы будем иметь в виду, что эти компоненты, по крайней мере в какой-то зачаточной форме, должны были возникнуть на ранней Земле спонтанно, иначе нарастающий отбор, и следовательно — жизнь, никогда не начнёт своё шествие по Земле. Здесь мы говорим не конкретно о ДНК, но об основных ингредиентах, необходимых для возникновения жизни где-нибудь во Вселенной.

Пророк Иезеркиль проповедовал в долине костей этим костям и побудил их соединиться вместе. Затем он проповедовал скелетам, и обрели они жилы и плоть. Но в них всё ещё не было духа. Главный компонент, компонент жизни, отсутствовал. На мёртвой планете есть атомы, молекулы и большие глыбы материи, хаотично толкающиеся и сливающиеся друг с другом, согласно законам физики. Иногда законы физики заставляют атомы и молекулы соединяться вместе подобно сухим костям Иезеркиля, иногда — заставляют их раскалываться розно. Могут образовываться довольно большие агрегации атомов, но они же могут снова крошиться и разламываться. Но от этого в них не появляется душа. Иезеркиль воззвал к четырём ветрам, чтобы они вселили живой дух в сухие кости. Но какой, в нашем случае, такой чудодейственный ингредиент должен присутствовать на мёртвой планете, подобной ранней Земле, чтобы у неё появился шанс в конечном счёте породить жизнь? Это не дух, не ветер, не какой-то эликсир или микстура. Это вообще не материя, а это свойство, свойство самокопирования. Это свойство — базовый ингредиент нарастающего отбора. Повинуясь обычным законам физики, где-то как-то должны возникнуть самокопирующиеся сущности, которые я буду называть репликаторами. В современной живой материи репликаторами являются почти исключительно молекулы ДНК, но ими может быть что угодно, с чего можно делать копии. Можно подозревать, что первыми репликаторами на изначальной Земле были не молекулы ДНК. Маловероятно, чтобы зрелая молекула ДНК начала существование без помощи других молекул, которые обычно существуют только в живых клетках. Вероятно, первые репликаторы были грубее и проще, чем ДНК.

Есть два других необходимых ингредиента, которые в норме будут автоматически сопровождать первый ингредиент — самокопирование. Во-первых, при самокопировании должны иметь место случайные ошибки; даже система ДНК изредка допускает ошибки, и представляется вероятным, что первые репликаторы на Земле ошибались намного больше. И во-вторых, по крайней мере некоторые репликаторы, должны иметь власть над своим будущим. Последний ингредиент выглядит более зловещим, чем он есть. На деле это означает, что некоторые свойства репликаторов должны влиять на вероятность их дальнейшего копирования. В какой-то примитивной форме, этот ингредиент будет, вероятно, неизбежным следствием самого факта самокопирования.

Тогда с каждого репликатора будут сделаны его копии. Каждая копия подобна оригиналу и имеет те же самые свойства. Среди этих свойств, разумеется, присутствует способность создания (иногда с ошибками) большого количества копий самого себя. Так что каждый репликатор — потенциально «прародитель» неопределённо длинной линии репликаторов-потомков, протянувшейся в отдалённое будущее и потенциально ветвящейся для производства чрезвычайно большого количества репликаторов-потомков. Каждая новая копия должна изготавливаться из сырья, меньших строительных блоков, толкающихся вокруг. Возможно, репликаторы играют роль некоего шаблона или матрицы. Меньшие компоненты вовлекаются в матрицу таким образом, что получается её дубликат. Затем дубликат выходит на свободу, и уже сам способен играть роль такой матрицы. Следовательно, здесь имеет место потенциально расширяющаяся популяция репликаторов. Популяция не может расти неограниченно, потому запасы сырья, меньших элементов, пригодных для вовлечения в матрицу, в конечном счете, ограничены.

Теперь рассмотрим второй ингредиент. Иногда копирование будет неточным — будут происходить ошибки. Вероятность ошибок невозможно полностью исключить при любом копировании, хотя вероятность их можно сделать низкой. Именно за это борются изготовители высококлассных аудиосистем; как мы видели, процесс репликации ДНК впечатляюще хорош в деле снижения количества ошибок. Но современная репликация ДНК — это высокотехнологичный процесс, со сложными методами коррекции ошибок, который совершенствовался в ходе многих поколений нарастающего отбора. Мы видели, что первые репликаторы были, вероятно, относительно грубыми приспособлениями с не очень высокой точностью копирования.

Поделиться:
Популярные книги

Назад в СССР: 1986 Книга 5

Гаусс Максим
5. Спасти ЧАЭС
Фантастика:
попаданцы
альтернативная история
5.75
рейтинг книги
Назад в СССР: 1986 Книга 5

Неудержимый. Книга III

Боярский Андрей
3. Неудержимый
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Неудержимый. Книга III

Мастер 3

Чащин Валерий
3. Мастер
Фантастика:
героическая фантастика
попаданцы
аниме
5.00
рейтинг книги
Мастер 3

Конструктор

Семин Никита
1. Переломный век
Фантастика:
попаданцы
альтернативная история
4.50
рейтинг книги
Конструктор

Наследник Четырех

Вяч Павел
5. Игра топа
Фантастика:
героическая фантастика
рпг
6.75
рейтинг книги
Наследник Четырех

Чехов. Книга 2

Гоблин (MeXXanik)
2. Адвокат Чехов
Фантастика:
фэнтези
альтернативная история
аниме
5.00
рейтинг книги
Чехов. Книга 2

Легат

Прокофьев Роман Юрьевич
6. Стеллар
Фантастика:
боевая фантастика
рпг
6.73
рейтинг книги
Легат

Земная жена на экспорт

Шах Ольга
Любовные романы:
любовно-фантастические романы
5.57
рейтинг книги
Земная жена на экспорт

Идеальный мир для Лекаря 11

Сапфир Олег
11. Лекарь
Фантастика:
фэнтези
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 11

Столичный доктор. Том II

Вязовский Алексей
2. Столичный доктор
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Столичный доктор. Том II

Столичный доктор. Том III

Вязовский Алексей
3. Столичный доктор
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Столичный доктор. Том III

Пропала, или Как влюбить в себя жену

Юнина Наталья
2. Исцели меня
Любовные романы:
современные любовные романы
6.70
рейтинг книги
Пропала, или Как влюбить в себя жену

Нефилим

Демиров Леонид
4. Мания крафта
Фантастика:
фэнтези
боевая фантастика
рпг
7.64
рейтинг книги
Нефилим

Бывший муж

Рузанова Ольга
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Бывший муж