Чтение онлайн

на главную

Жанры

Шрифт:

Есть палиндромы и среди кубов, например 113=1331, причем в большинстве случаев, если куб – палиндром, то и кубический корень из него – тоже палиндром. Далее 114=14641. Ожидаемого результата с пятой степенью не получается: 115=161051 – не палиндром. Поиск палиндромов среди пятых степеней, пока не дал результатов. Высказана гипотеза, согласно которой не существует чисел палиндромов вида xk при k>4. Её кому-то нужно доказать или опровергнуть [??]

Попробуйте

поискать, поэкспериментировать, используя электронную таблицу Excel в офисном пакете. Там есть встроенная функция степени и таблицу чисел легко вводить методом протягивания. Считать не придется, результат определяется только визуально. Если вы владеете любым простейшим языком программирования типа Basic, то можете запрограммировать и вывод итогового палиндрома, если он найдется, конечно. Работа интересная, в мире столько интересного, делал бы сам, но оставляю вам.

Другой вопрос – сколько существует простых чисел палиндромов. Простыми называются числа, не имеющие делителей кроме единицы и самого себя. Среди первых пятидесяти простых чисел я нашел шесть палиндромов: 11, 101, 131, 151, 181, 191. Сколько их всего – неизвестно! Высказывалось предположение о том, что простых чисел палиндромов бесконечно много, но эта гипотеза пока не доказана [??]

Одна знаменитая гипотеза в теории чисел так и называется «гипотеза о палиндромах», и состоит в следующем. Если взять некоторое многозначное число и к нему прибавить число с переставленными в обратном порядке цифрами, потом то же самое проделать с полученной суммой, то, повторяя эти действия несколько раз, вы непременно получите число-палиндром. Гипотеза утверждает, что независимо от того, какое число выбрано, после конечного числа шагов вы непременно получите палиндром.

Иногда для достижения симметричного результата приходится делать большое число шагов, например, для числа 89 ожидаемый результат получается только после 24-го шага. Существует ли число, которое никогда не приведет к симметричному результату? Это никем еще не доказано! Наименьшее число, с которым еще не ясно – это 196. Математики на компьютерах проделали сотни тысяч шагов, но получить палиндром так и не удалось, хотя никем не доказано, что он никогда не появится [??]. Теперь осуществим переход к математическим предложениям палиндромам, есть ведь и такие в богатом мире математики. Для этого нужно использовать математические действия. Начнем со сложения.

25+63=36+52, 42+35=53+24, 76+34=43+67.

Остальные арифметические действия тоже не отстают:

41-32=23-14, 46-28=82-64, 52-16=61-52.

26x31=13x62, 63x48=84x36, 82x14=41x28.

62:31=26:13, 82:41=28:14, 96:32-69:23.

Показали примеры с двузначными числами, но есть и многозначные палиндромы с математическими действиями. Мир чисел, в отличии от мира слов – бесконечен.

Пример предложения длиннее с использованием всех цифр кроме нуля: 98-76-54+32+1=1+23-45-67+89.

Теперь математическое выражение, которое в целом палиндромом не является, но каждое число этом выражении – палиндром:

2x121x10201=2x112x1012=22x112211=1111x2222=2456542.

Тысячу раз прав был А. С. Пушкин, сказав: «О, сколько нам открытий чудных готовит просвещенья дух…».

Все рассмотренные палиндромы, как отдельные слова, так и предложения, как в русском языке, так и в математике относятся к буквенным и цифровым палиндромам. Если же укрупнить единицу рассмотрения? После буквы идет слог. Существуют слоговые палиндромы, в которых в обратную сторону нужно читать не по буквам, а по слогам. Простейшие из них двуслоговые известны всем: мама, папа баба, дядя, няня. То есть читаем ма-ма и наоборот ма-ма.

Трехслоговые палиндромы: царица, калитка, калека, зараза. В трехслоговых нужно чтобы первый и последний слог совпадали, а средний как бы осевой.

Со слоговыми палиндромами занимаются меньше, чем с буквенными, как-то они остаются в стороне от магистрального буквенного пути. Но есть примеры и предложений, которые являются слоговыми палиндромами. Не спи на спине.

Злободневные выражения: Денег взять негде.

Яму копал кому я? Автор Роман Адрианов.

Не вой на войне.

Вы живы? Автор Сергей Федин.

Еще более ослабляя понятие симметрии, перейдем от смысловой симметрии слов к ритмической симметрии отдельных произведений. Можно сказать, что общим свойством стихотворной речи является симметричность ее построения, основанная на повторяемости составляющих ее элементов: слогов, строк и т. д. Чередование ударных и безударных слогов создает ритм стиха. Прочитайте с выражением строки А. А. Фета, и вы почувствуете эту красоту ритма, хотя здесь нет никаких палиндромов:

Какая грусть! Конец аллеи

Опять с утра исчез в пыли,

Опять серебряные змеи

Через сугробы поползли.

На небе ни клочка лазури,

В степи все гладко, все бело,

Один лишь ворон против бури

Крылами машет тяжело.

Этот стихотворный размер называется ямбом. Если быть точным, то здесь присутствует антисимметрия – понятие более сложное, чем просто симметрия. В школьной математике оно не изучается, но мы его рассмотрим на простом примере. Левая и правая перчатки симметричны, у них есть плоскость симметрии.

Теперь представьте, что две левых перчатки сшиты из куска кожи, окрашенного с одной стороны в белый, а с другой стороны в черный цвет. Заметим, что левую перчатку можно вывернуть и одеть на правую руку, только наша специфическая перчатка при этом еще изменит свой цвет. Левая белая перчатка и правая черная, полученная последовательным отражением в вертикальной плоскости и перекрашиванием (выворачиванием), будут антисимметричны, а плоскость их отражения будет называться плоскостью антисимметрии. Таким образом, антисимметрия, кроме отражения, предполагает изменение свойства отражаемого предмета на противоположное. С этим понятием мы сталкивались и раньше, только не применяли слово атисимметрия. На числовой оси, образующей систему координат, числа, расположенные по разные стороны от начала координат, но на равном расстоянии от него, тоже антисимметричны, потому что имеют разный знак.

Поделиться:
Популярные книги

Я еще не князь. Книга XIV

Дрейк Сириус
14. Дорогой барон!
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Я еще не князь. Книга XIV

LIVE-RPG. Эволюция 2

Кронос Александр
2. Эволюция. Live-RPG
Фантастика:
социально-философская фантастика
героическая фантастика
киберпанк
7.29
рейтинг книги
LIVE-RPG. Эволюция 2

Матабар

Клеванский Кирилл Сергеевич
1. Матабар
Фантастика:
фэнтези
5.00
рейтинг книги
Матабар

Кодекс Крови. Книга VII

Борзых М.
7. РОС: Кодекс Крови
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Кодекс Крови. Книга VII

Безымянный раб [Другая редакция]

Зыков Виталий Валерьевич
1. Дорога домой
Фантастика:
боевая фантастика
9.41
рейтинг книги
Безымянный раб [Другая редакция]

Светлая ведьма для Темного ректора

Дари Адриана
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Светлая ведьма для Темного ректора

ТОП сериал 1978

Арх Максим
12. Регрессор в СССР
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
ТОП сериал 1978

Сердце дракона. Том 18. Часть 2

Клеванский Кирилл Сергеевич
18. Сердце дракона
Фантастика:
героическая фантастика
боевая фантастика
6.40
рейтинг книги
Сердце дракона. Том 18. Часть 2

Рота Его Величества

Дроздов Анатолий Федорович
Новые герои
Фантастика:
боевая фантастика
8.55
рейтинг книги
Рота Его Величества

Я — Легион

Злобин Михаил
3. О чем молчат могилы
Фантастика:
боевая фантастика
7.88
рейтинг книги
Я — Легион

Двойной запрет для миллиардера

Тоцка Тала
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Двойной запрет для миллиардера

Газлайтер. Том 12

Володин Григорий Григорьевич
12. История Телепата
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Газлайтер. Том 12

Мятежник

Прокофьев Роман Юрьевич
4. Стеллар
Фантастика:
боевая фантастика
7.39
рейтинг книги
Мятежник

На границе империй. Том 10. Часть 2

INDIGO
Вселенная EVE Online
Фантастика:
космическая фантастика
5.00
рейтинг книги
На границе империй. Том 10. Часть 2