Смерть в черной дыре и другие мелкие космические неприятности
Шрифт:
Раз уж мы об этом заговорили, черные дыры тоже не совсем черные. На самом деле они очень медленно испаряются, поскольку испускают очень маленькие количества света с края горизонта событий – этот процесс описал физик Стивен Хокинг. В зависимости от массы черной дыры она может испускать свет в любой форме. Чем меньше черные дыры, тем быстрее они испаряются, а потом им приходит конец, что знаменуется бешеной вспышкой энергии, а также видимого света.
Современные иллюстрации к научным и научно-популярным текстам, которые показывают по телевизору и печатают в книгах и журналах, зачастую сделаны с помощью искусственной палитры цветов. Особенно в этом преуспели создатели телевизионных прогнозов погоды – они обозначают, скажем, ливневые дожди одним цветом, а просто дожди – другим. Когда астрофизики создают изображения космических объектов, то обычно приписывают шкале яркостей этих объектов произвольный
На карте знаменитого реликтового излучения некоторые области теплее среднего. И, разумеется, некоторые холоднее, как же иначе. Диапазон составляет одну стотысячную градуса. Как отразить этот факт? Сделать теплые участки красными, а холодные синими – или наоборот. Так или иначе, очень маленькие колебания температур на изображении будут бросаться в глаза и казаться очевидными.
Иногда широкая публика видит полноцветное изображение космического объекта, который был сфотографирован в невидимом диапазоне, например в инфракрасном или в радиодиапазоне. Как правило, в таких случаях мы приписываем три цвета – обычно классические красный, зеленый и синий (палитра «RGB») – трем разным участкам спектральной полосы. В результате подобных упражнений полноцветное изображение строится так, словно мы от природы обладаем способностью видеть цвета в этих невидимых частях спектра.
Из всего этого следует, что обычные, обиходные цвета вполне могут значить для ученых совсем не то, что для всех прочих. В тех случаях, когда астрофизики решают говорить прямиком, без метафор, у них есть инструменты и методы, которые позволяют определить, какой именно цвет испускается или отражается от того или иного объекта, и не зависеть от вкусов художника или от капризов человеческого цветовосприятия. Однако подобные методы не делают скидок на неподготовленного зрителя. При построении изображений используются логарифмические отношения интенсивностей испускаемого объектом излучения в разных фильтра, которые выстроены в тщательно продуманную систему, учитывающую, кроме всего прочего, зависимость чувствительности детектора от энергии регистрируемого света. Видите, я же предупреждал, что мы не делаем скидок на неподготовленность. Когда отношение интенсивностей, скажем, уменьшается, объект на компьютерном изображении становится более голубым независимо от того, какого «цвета» он был изначально.
С кем капризы человеческого восприятия сыграли злую шутку – так это с состоятельным американским астрономом-любителем и большим фанатом Марса Персивалем Лоуэллом. На рубеже XIX и XX столетий он сделал очень подробные зарисовки поверхности Марса. Чтобы делать подобные наблюдения, нужно, чтобы воздух в обсерватории был сухой и неподвижный – тогда свет от планеты не исказится и не смажется на пути к твоей сетчатке. Потому-то Лоуэлл в 1894 году и основал Обсерваторию Лоуэлла, крупнейшую частную обсерваторию в США, в засушливой Аризоне, на вершине Марсианского холма. Богатая железом, ржавая поверхность Марса выглядит красной при любом увеличении, однако Лоуэлл заметил на ней еще и много зеленых пятен, а также переплетение каналов – по крайней мере, именно так он описал их и зарисовал: по его мнению, это были искусственные водоводы, предположительно построенные самыми настоящими живыми марсианами, которые стремились доставить драгоценную воду от полярных ледников в свои города, деревни и сельскохозяйственные угодья.
По поводу вуайеристской страсти поглядывать за инопланетянами у Лоуэлла мы сейчас распространяться не будем. Давайте лучше побеседуем о каналах и зеленых пятнах растительности. Персиваль, сам того не ведая, стал жертвой двух широко известных оптических иллюзий. Во-первых, человеческий мозг практически всегда стремится выделить какую-то визуальную закономерность даже там, где никакой закономерности нет. Ярчайший пример – это созвездия в небе: результат игры воображения сонных обывателей, которые искали порядок в случайных группах звезд. Подобным же образом мозг Лоуэлла интерпретировал никак не связанные между собой особенности поверхности и атмосферы Марса и решил, что это осмысленные крупномасштабные конструкции.
Вторая иллюзия состоит в том, что серый цвет рядом с рыжевато-красным кажется сине-зеленым: этот эффект
Сыграл свою роль и другой физиологический эффект, не вполне очевидный и не вызывающий такого конфуза: обычно мозг корректирует цвета в соответствии с обстановкой, в которую попадаешь. Вот, скажем, в джунглях, где практически весь свет, пробившийся сквозь листву, прошел сквозь зеленый фильтр (то есть сквозь листву), молочно-белый лист бумаги должен тоже показаться зеленым. Однако этого не происходит. Несмотря на особое освещение, мозг делает его белым.
Приведу пример попроще: вспомните, как поздно вечером выглядят окна, за которыми люди смотрят телевизор. Если в комнате нет источников света, кроме телевизора, стены комнаты окрасятся в нежно-голубой цвет. Но мозг телезрителей, залитых светом от экрана, корректирует цветовую гамму интерьера, поэтому сами они никакого искажения не замечают. Эта физиологическая компенсация не даст первым марсианским колонистам зациклиться на преобладающем в пейзаже красном цвете. Более того, первые изображения, которые отправил на Землю в 1976 году марсоход «Викинг», были преднамеренно подкрашены темно-красным, чтобы соответствовать ожиданиям прессы.
В середине XX века ночное небо стали систематически фотографировать с одного и того же места неподалеку от города Сан-Диего в штате Калифорния. Получившаяся в результате беспрецедентная база данных, которая называется «Паломарский обзор неба» (Palomar Observatory Sky Survey), легла в основу долгосрочных прицельных наблюдений, которыми занимается уже целое поколение астрофизиков. Исследователи космоса фотографировали небо дважды при одинаковой экспозиции на два разных сорта особых черно-белых фотографических пластин фирмы «Кодак»: одна разновидность была более чувствительна к синему свету, другая – к красному. (В корпорации «Кодак» появилось целое подразделение, чьей задачей было обслуживать этот фотографический фронт; коллективные усилия астрономов и сотрудников фирмы и вывели отдел НИОКР в «Кодаке» на нынешний высокий уровень.) Если вас интересует какой-то небесный объект, первым делом сравните его снимки на «красной» и «синей» пластине – и получите первые данные о том, какой именно свет он излучает. Например, очень красные объекты ярко видны на красных фотографиях, однако едва различимы на синих. Подобного рода информация позволяет выработать программы дальнейшего наблюдения за выбранным объектом.
Диаметр Космического телескопа им. Хаббла обладает достаточно скромными размерами по сравнению с крупнейшими наземными телескопами – всего 2,4 метра, – однако этот аппарат все равно сделал весьма впечатляющие цветные снимки космоса. Самые значительные из них вошли в серию «Наследие телескопа им. Хаббла» (Hubble Heritage Project), благодаря которой заслуги этого космического аппарата останутся в наших умах и сердцах. Однако широкая публика сильно удивится, если узнает, каким именно образом астрофизики получают цветные изображения. Прежде всего, мы применяем ту же цифровую технологию CCD, что и в любительских видеокамерах, только мы начали ею пользоваться на десять лет раньше вас и наши детекторы не в пример лучшего качества. Во-вторых, прежде чем свет попадает в CCD, мы фильтруем его одним из нескольких десятков способов. Для обычного цветного снимка мы получаем три последовательных изображения объекта через широкополосные фильтры – красный, зеленый и синий. Несмотря на названия, вместе эти фильтры охватывают весь видимый спектр. Затем мы комбинируем на компьютере все три снимка так же, как компьютер у вас в черепной коробке комбинирует сигналы от колбочек в сетчатке, чувствительных к красному, зеленому и синему цвету. Так создается цветная картинка, очень напоминающая то, что увидели бы вы сами, если бы глаз у вас был 2,4 метра в диаметре.
Однако предположим, что какой-то объект из-за квантовых свойств своих атомов и молекул испускает свет исключительно на определенных длинах волн. Если мы заранее это знаем и применяем узкие фильтры, центры которых находятся именно на этих длинах волн, то можем сузить чувствительность изображения до конкретного узкого диапазона, вместо того чтобы использовать широкополосную палитру RGB. Каков же результат? На картинке яснее ясного станут видны всевозможные особенности и странности нашего объекта, структура и текстура, которая иначе осталась бы незамеченной. За примерами не приходится далеко ходить – они прямо здесь, у нашего космического порога. Откровенно признаюсь, что никогда в жизни не видел красное пятно на Юпитере в обычный телескоп. Иногда оно ярче, иногда бледнее, но в любом случае лучше смотреть на него сквозь фильтр, который выделяет красные длины волн, исходящих от молекул в газовых облаках.