Солнечная система (Астрономия и астрофизика)
Шрифт:
Чтобы возникли ледяные поля, на Меркурии должны были когда-то существовать океаны и плотная атмосфера. Если открытие полярных льдов подтвердится, то наше представление об истории этой планеты полностью изменится. Однако те же радиоотражательные свойства допускают и другую трактовку, например, как отложения серы, а не льда.
Строение недр Меркурия
Строение коры, мантии и ядра Меркурия относятся к наиболее актуальным вопросам физики этой планеты. Если представление о системе сферических оболочек, окружающих центральное ядро, справедливо для такой массивной планеты, как Земля, то планеты с малой массой могут иметь другое строение. Например, иначе устроена Луна. Уже первые искусственные спутники Луны установили неоднородность распределения масс в ее коре. Появилось новое понятие — «масконы», проявляющие
Тщательные наблюдения за движением спутников позволяют найти безразмерный момент инерции планеты I/(MR2) относительно, например, ее полярной оси. Эта важная величина указывает, как распределена масса в недрах планеты. Например, у пустотелой сферы безразмерный момент равен 2/30,67. У шара с одинаковой по всему объему плотностью он равен 0,4. Если же внутри однородного шара находится более плотное ядро, их полный момент инерции будет меньше, чем 0,4. Разумеется, если планета идеально сферическая, то ее внешнее гравитационное поле не зависит от степени концентрации вещества, и наблюдения за спутником не позволят «заглянуть» внутрь планеты. Однако вращение планеты деформирует не только ее тело, но и поле; при этом, чем сильнее концентрация вещества к центру планеты, тем слабее отличается ее поле от сферического. Анализируя движение спутника, определяют форму гравитационного поля, а измерив скорость вращения и степень видимого сжатия планеты, вычисляют по этим данным момент инерции, указывающий степень концентрации вещества к центру. Затем, привлекая теоретические и экспериментальные данные о поведении материалов при высоких давлениях, рассчитывают модель строения планеты, удовлетворяющую всем измеренным параметрам.
В центре Земли, благодаря огромному давлению, плотность внутреннего ядра достигает 10,5т/м3. Плотность оболочки (коры и мантии) в 2—3 раза меньше. Безразмерный момент инерции Земли составляет 0,3309, что определенно указывает на массивное металлическое ядро. Совсем другие результаты были получены из анализа гравитационного поля Луны. По уточненным данным, ее момент равен 0,394; это несомненно говорит о том, что весь материал Луны имеет плотность, близкую к средней (3,33т/м3). У поверхности Луны породы действительно имеют плотность 3,0—3,3т/м3. Значит, если у Луны есть ядро, оно очень маленькое.
Поскольку Земля имеет наибольшую массу и размер среди планет земной группы, именно у нее следовало бы ожидать наибольшую концентрацию вещества к центру. Но неожиданно выяснилось, что безразмерный момент инерции Меркурия меньше земного: 0,324. Следовательно, железное ядро у Меркурия относительно больше, чем у Земли. Оно занимает около 45% объема планеты. Над ним расположена силикатная оболочка толщиной 600—700 км. Плотность поверхностных пород Меркурия, вероятно, того же порядка, что и у Луны, поэтому для получения наблюдаемой средней плотности планеты (5,44 г/см3) железное ядро необходимо.
Таким образом, Меркурий не удается однозначно отнести ни к типу Земли, ни к типу Луны. Его поверхность похожа на лунную, но железное ядро не уступает земному.
Экзосфера Меркурия
С помощью «Маринера-10» у Меркурия было обнаружено подобие атмосферы. Ее правильнее называть экзосферой, по аналогии с верхними, весьма разреженными этажами плотных атмосфер других планет. Существование или отсутствие атмосферы у планеты определяется рядом обстоятельств. Прежде всего, это сила тяготения: чем больше скорость ухода с поверхности планеты, тем надежнее она удерживает легкие газы. Но чем меньше молекулярная или атомная масса газа, тем труднее удержать газ. Особенно трудно удержать легкие и подвижные молекулы водорода и атомы гелия.
Важную роль играет температура внешней части атмосферы — экзосферы. С повышением температуры скорость атомов газа может достичь второй космической скорости — тогда частица навсегда покидает
Кроме гелия, в атмосфере Меркурия найдено ничтожное количество водорода. Его примерно в 50 раз меньше, чем гелия. Другие газы не обнаружены. Предполагая, что они там все же присутствуют, специалисты оценивают общее максимальное количество атомов и молекул газа в атмосфере как 2x1014 над 1см2 поверхности. При высоте атмосферы в сотни километров это дает плотность у поверхности около 107см—3. Подобная степень разрежения пока недоступна земной вакуумной технике. Атомы и молекулы газов в такой атмосфере движутся по баллистическим траекториям и встречаются столь редко, что никакие реакции между ними невозможны. Соприкасаясь с поверхностью, они приобретают скорость, зависящую от ее температуры. Поэтому на ночной стороне Меркурия скорость атомов газа значительно меньше, чем на дневной. В результате в вертикальном столбе атмосферы ночью содержится в 30 раз большее число атомов гелия, чем днем. Но и при таких концентрациях сами понятия температуры и давления лишены смысла.
В 1985 г. методом наземной спектроскопии в составе меркурианской атмосферы были обнаружены пары щелочных металлов — натрия и калия — примерно в соотношении 25:1, в ничтожных, но спектроскопически измеримых количествах: до 1011атомов/см2 поверхности. Излучение в линиях натрия и калия прослеживается на больших высотах над планетой, причем его интенсивность непостоянна. По некоторым данным, испарение щелочных металлов происходит из коры планеты, с глубины до 10 км., причем наблюдалось повышение их концентрации над равниной Жары. Положение еще больше усложняется тем, что отмечена связь этих эмиссий с солнечной активностью.
Присутствию в экзосфере Меркурия паров щелочных металлов пока нет исчерпывающих объяснений. Из-за большого эксцентриситета его орбиты в коре планеты рассеивается значительная приливная энергия, что обязательно должно вызвать ее разогрев. Можно предположить, что такой разогрев вызывает истечение паров щелочных металлов и их солей через небольшие газовые вулканы — фумаролы.
Магнитное поле Меркурия
Плазма солнечного ветра состоит из заряженных частиц — электронов, протонов, ядер гелия. Достигая планеты, обладающей магнитным полем, потоки частиц сталкиваются с магнитосферой. Поскольку магнитное поле убывает с расстоянием, на некотором удалении от планеты его давление сравнивается с газодинамическим давлением солнечной плазмы, там она и останавливается. Именно вдоль этой границы расположен слой, по которому течет ток. Впереди слоя набегающая плазма образует ударную волну, в которой она сильно разогревается. В случае Земли эти события разыгрываются примерно на расстоянии 70 тыс. км. от планеты (со стороны Солнца).
Надежно установлено, что медленно вращающаяся Луна практически лишена магнитного поля. Тем более удивительным было обнаружение ударной волны и магнитного поля вблизи Меркурия. Правда, нельзя категорически утверждать, что все обнаруженное магнитное поле есть дипольное поле самой планеты. Представление магнитного поля Меркурия дипольным приближением несколько условно. Существуют сложные механизмы внедрения (имплантации) магнитного поля Солнца, перенесенного плазмой солнечного ветра, в магнитосферу планеты. Но предположение о поле самой планеты лучше объясняет наблюдаемые явления. Его напряженность на экваторе достигает 3,5x10—3Гс., а у полюсов 7x10—3Гс. Это примерно 0,7% от напряженности земного магнитного поля. Наклон оси диполя к оси вращения Меркурия 12° (у Земли 10°). Направление магнитных диполей у Меркурия и Земли одинаково.