Солнечный луч
Шрифт:
Красный краситель крапп получают из корня растения марены. Красящим веществом марены является ализарин, который дает красную окраску только после протравы солями алюминия. В древности для этой цели применялись алюминиевые квасцы. С солями железа ализарин Дает фиолетовую окраску, с солями хрома — коричневую. Красный краситель кошениль добывают из насекомых, паразитирующих на кактусах. Кошениль была составной частью дани, которой Кортес обложил ацтеков после завоевания Мексики.
Не простой проблемой с давних времен было отбеливание тканей — устранение присущего им желтоватого цвета. В античном мире с этой целью использовали окуривание серой, разрушающей
В растительном мире придают красную, лиловую, пурпурную и синюю окраску цветам антоцианы — фенольные красители, почти так же широко распространенные, как хлорофилл, каротиноиды, ксантофиллы. Безвредные и даже обладающие Р-витаминной активностью, антоцианы ныне используются в качестве пищевых красителей. Для окраски тканей они не используются из-за нестойкости.
С увеличением производства тканей обеспечить их крашение старыми способами стало невозможно. Начались поиски заменителей естественных красителей. В 1856 г. английский химик Перкин в результате окисления анилина получил первый синтетический краситель. Через несколько лет были изготовлены различные анилиновые краски. Но получение красителей с заранее заданными свойствами стало возможным после того, как трудами выдающегося русского химика А. М. Бутлерова была создана теория строения химических соединений.
В настоящее время существует много тысяч синтетических красителей. Основным структурным элементом большинства красителей является шестичленное бензольное кольцо:
(Ниже структурные элементы красителей будут показаны условно в виде «скелетов» — без обозначения двойных связей и атомов углерода и водорода.)
Бензольное кольцо (I) обычно повторяется в скелете красителя несколько раз, сочетаясь с другими кольцами: пиридиновым (II), азиновым (III), оксазиновым (IV), пиррольным (V). Встречаются и более сложные структуры из двух колец: нафталиновая (VI), хинолиновая (VII), бензопиррольная (VIII) и др.:
Циклические структуры в молекуле красителя связаны между собой с помощью центрального атома или цепочки, например, азогруппы —N = N—, полиметиновой цепочки —СН = СН—СН = СН— и т. д. В результате замещения атомов водорода в кольцах группами СН 3—, —С 2Н 5—, атомами хлора, брома, йода, аминогруппами —NH 2, сульфогруппами —S0 3H получено огромное количество разнообразных красителей.
Наиболее известные синтетические красители представляют собой солеобразные соединения, т. е. это заряженные молекулярные ионы. Приобретению молекулой заряда способствуют так называемые ауксохромные группы: —NH 2(аминогруппа) и —ОН (гидроксильная). Включение этих групп в молекулу выявляет или усиливает цвет исходного соединения, способствует проявлению его красящих свойств.
Все сказанное о структуре относится не только к синтетическим, по и к естественным красителям, в частности к
Для соединения атомов углерода и водорода, кислорода, азота, серы, из которых построены молекулы красителей, типична ковалентная связь, которая осуществляется парой электронов, общих для обоих связанных атомов. В качестве грубой схемы можно представить себе, что каждый электрон описывает вокруг обоих атомов сложную орбиту — восьмерку. Чтобы возбудить образующие такую связь сигма-электроны, нужна очень большая энергия. Соединения, содержащие одинарные, насыщенные связи, способны поглощать только большие фотоны коротковолновых ультрафиолетовых лучей. Как красители они не пригодны: они поглощают свет в области, далекой от видимой области спектра.
Иное дело — молекулы ненасыщенных соединений, содержащие двойную связь. Электроны, образующие вторую связь
легко возбуждаются. Для перехода на более высокий энергетический уровень таким электронам (их называют пи-электронами) требуется гораздо меньше энергии. Но и вещества с двойными связями поглощают только ультрафиолетовые лучи, а потому они не окрашены. Особенно подвижны пи-электроны в соединениях с сопряженными, правильно чередующимися двойными связями. Таковы, например, полиметиновые и азометиновые цепи атомов, а также замкнутые, главным образом шестичленные кольца и их агрегаты. Во всех этих структурах пи-электроны настолько слабо связаны со своими двумя атомами, что свободно перемещаются по всей структуре молекулы. Такие делокализованные электроны особенно легко возбуждаются квантами небольшой величины. Вещества, содержащие де-локализованные пи-электроны, способны поглощать фотоны света в видимой области спектра, т. е. они окрашены.
В структуре красителей основные элементы молекул (кольца и цепочки) представляют собой системы сопряженных связей с делокализованными пи-электронами. Именно эта особенность структуры и делает их красителями. Удлинение системы сопряженных связей, переход бензольных колец в хиноидную форму (с образованием дополнительных двойных связей) облегчают возбуждение и сдвигают максимум поглощения света в сторону более длинных волн.
Аналогично действует включение в молекулу красителя ауксохромных групп (—NH 2; —ОН), увеличивающих заряд и поляризацию молекулы.
Процесс поглощения энергии молекулами красителя очень важен для живых организмов, в теле которых большую роль играют красящие вещества — пигменты. Важен он и для практической деятельности человека, будь то крашение тканей, применение красителей в качестве лекарственных препаратов или добавок к пищевым продуктам.
Молекула, поглотившая фотон света, не может долго оставаться в возбужденном состоянии. В течение стомиллионных долей секунды она отдает свою избыточную энергию, а возбужденный электрон скачком возвращается на место. Отдача электронной энергии возбуждения происходит несколькими путями.