Чтение онлайн

на главную

Жанры

Шрифт:

Фотосенсибилизация — это только один из типов фотохимических реакций, в которых участвуют молекулы красителей, поглотившие свет. Важнейшее значение ее состоит в том, что с помощью особых веществ — фотосенсибилизаторов — организм получает возможность утилизировать энергию фотонов видимого света, которая сама по себе слишком мала, чтобы вызвать значительный фотохимический эффект. «Посредническая» роль в этом процессе красителей-фотосенсибилизаторов, и в первую очередь хлорофилла, весьма велика.

Послесвечение и свечение

Одним из естественных путей отдачи энергии света, поглощенной красителями, является излучение. Возбужденный электрон скачком возвращается на свое место в атоме, а избыточная энергия высвечивается в виде кванта излучения. Вторичное излучение, называемое флуоресценцией,— одна из разновидностей послесвечения. Как ни мала длительность возбуждения электрона (10 – 7—10 – 9сек), часть электронной энергии успевает за это время рассеяться в виде энергии вибрации молекул. Поэтому излученный квант обычно немного меньше поглощенного, а длина волны излучаемого света — несколько больше (правило Стокса).

При некоторых обстоятельствах длительность послесвечения составляет десятые доли секунды и даже целые секунды. Это явление было названо фосфоресценцией, так как оно казалось похожим на свечение фосфора. В действительности же фосфор светится по совершенно другим причинам. Что же касается фосфоресценции, то физическую природу этого явления раскрыл выдающийся советский физик С. И. Вавилов. Он обратил внимание на то, что фосфоресценция лучше выражена при низких температурах или в жестких, стеклообразных средах, т. е. в условиях, когда подвижность молекул ограничена. Чтобы понять природу процесса фосфоресценции, рассмотрим более подробно схему возбужденного состояния атома.

Когда электрон возвращается с высокого энергетического уровня на исходный, иногда происходит «заминка». Если до разрядки электрон успевает растратить значительную часть своей энергии, он оказывается на промежуточном уровне. Вернуться на исходную, основную орбиту электрон теперь не может. Чтобы выбраться из «ямы», электрон должен приобрести растерянную им часть энергии, подняться на уровень возбуждения, а затем скачком вернуться в исходное состояние. Такой сложный путь требует времени для выполнения, поэтому метастабильное возбужденное состояние сохраняется значительно дольше обычного. При высокой температуре раствора недостающая для разрядки метастабильного состояния энергия может быть легко получена за счет теплового движения молекул. Но при низкой температуре или стеклообразном состоянии раствора разрядка затруднена, поэтому метастабильное состояние и фосфоресценция сохраняются особенно долго.

Рассмотренные нами виды послесвечения имеют различную физическую природу, но внешне сходны. В отличие от рассмотренного в одном из предыдущих разделов этой главы температурного свечения, спектральный состав которого зависит от температуры источника и с ростом ее изменяется в соответствии с законом Вина, флуоресценция и фосфоресценция должны быть отнесены к холодному свечению, или люминесценции [Люминесценция (от греческого «люмен» — свет) — это всякого рода надбавка над температурным свечением источника.], и носят общее название фотолюминесценции, ибо причиной их возникновения является поток фотонов — свет.

Фотолюминесценция широко используется на практике. Улицы наших городов, многие общественные здания и учреждения освещаются лампами дневного света, работающими по принципу фотолюминесценции. Находящиеся в электрическом поле пары ртути испускают главным образом ультрафиолетовые лучи. Если на внутреннюю поверхность стеклянной трубки предварительно нанесен слой люминофора — вещества, превращающего кванты ультрафиолета в меньшие по величине фотоны видимого света в соответствии с правилом Стокса, такая лампа при одинаковой мощности потребляемого тока дает в 3—4 раза больше света, чем обычная лампа накаливания. Путем подбора люминофоров ученые добиваются приближения спектра излучения люминесцентных ламп к спектральному составу дневного света.

В нашей стране выпускают в настоящее время люминесцентные лампы четырех типов: дневного света (ДС), холодно-белого света (ХБС), белого (БС) и тепло-белого света (ТБС). Во всех лампах возбуждает люминесценцию резонансная линия паров ртути с длиной волны 2537 А. Стеклянная трубка лампы изнутри покрывается тонким слоем люминофора — галофосфата кальция, активированного сурьмой или марганцем. Изменяя соотношение компонентов, получают 4 названных типа ламп. Излучение ламп дневного света голубовато-белое, соответствует тепловому излучению источника с температурой 6500°С; свет ламп холодно-белого света — 4200°С, белого — 3500°С, тепло-белого (белого с розовато-оранжевым оттенком) — 2700°С. Сейчас более половины светового потока, создаваемого искусственными источниками света, производится люминесцентными лампами. Наряду с высокой экономичностью им присущи малая яркость и слепимость, а также другие ценные качества. Один из недостатков — так называемый стробоскопический эффект — обусловлен тем, что свечение люминесцентных ламп — это по существу ряд вспышек, следующих друг за другом каждую сотую долю секунды, т. е. соответствующих половине периода переменного тока, питающего лампу. При малейшем падении напряжения (а они неизбежны при питании переменным током) лампа гаснет. Спираль лампы накаливания за сотую долю секунды не успевает остыть, а свечение люминесцентной лампы успевает исчезнуть и вновь зажечься. Поэтому движущиеся предметы в свете таких ламп мы видим не плавно перемещающимися, а мелькающими. Устраняют эффект соединением нескольких ламп в одном светильнике.

Явление послесвечения органически связано с процессом поглощения световых квантов. Но существуют и другие виды холодного свечения.

Кат од о люминесценция — свечение газов, порошков, кристаллов под влиянием быстродвижущихся электронов, разгоняемых электрическим полем. Таковы, например, полярные сияния, возникающие при вторжении в атмосферу электронов солнечного ветра, солнечных вспышек.

Под словом электролюминесценция понимают свечение разреженных газов в электрическом поле дугового или тлеющего разряда. Причиной свечения является возбуждение частиц газа электронами, которые под влиянием разности потенциалов приобретают большую скорость и энергию. В отличие от катодолюминесценции в данном случае электроны не вводятся извне, а вырываются силами электрического поля из атомов самого светящегося газа. На этом принципе работают все газосветные лампы: и те, которые используются для световых реклам (в них светятся инертные газы неон, аргон, криптон и др.), и ртутно-кварцевые лампы, дающие ультрафиолетовые лучи, и другие лампы, применяемые в физиотерапии, и водородные лампы с непрерывным спектром излучения. Неоновые трубки дают оранжевое свечение, гелиевые — желтое, аргоновые со ртутью — синее, аргоновые со ртутью в желтых трубках — зеленое. Белесоватое свечение дают пары ртути и углекислый газ. Газовый разряд в парах ртути при низком давлении дает линейчатое излучение в основном с длинами волн 1849 и 2537 А. Кварцевые трубки пропускают вторую линию. Такие лампы называются бактерицидными, так как ультрафиолетовые лучи в области 2500—2650 А губительны для микроорганизмов. При увеличении давления паров ртути и использовании трубок из увиолевого стекла получают длинноволновое ультрафиолетовое излучение (2804 и 3130 А). Такие лампы называются эритемными — они вызывают покраснение кожи и загар.

Сернистый цинк, особенно при добавке серебра, меди или марганца, светится под влиянием приложенного переменного электрического поля. Это явление используется для создания больших светящихся поверхностей, для сигнализации, в целях рекламы и т. п.

Явления катодо- и электролюминесценции находят широкое применение в технике. Электронный луч в кинескопах — электронно-лучевых трубках телевизоров скользит по экрану, покрытому люминофором, перемещаясь по горизонтали и вертикали под влиянием магнитных и электрических полей (рис. 15), давая изображение.

Сходную физическую природу имеет свечение, возникающее под влиянием процессов радиоактивного распада и рентгеновского излучения (радиолюминесценция). Возникающие при распаде ядер частицы (протоны, а-частицы, электроны и др.) непосредственно ведут к возбуждению и ионизации атомов некоторых веществ. Свечение вызывают также выбитые ими и рентгеновскими квантами электроны. Каждая ионизирующая частица вызывает самостоятельную вспышку света. Поэтому специальными кристаллами, светящимися под влиянием таких частиц, пользуются для измерения количества распадов, дозы излучения. Счетчики излучения с такими кристаллами называются сцинтилляционными (от латинского слова сцинтилла — искра, вспышка). Рентгеновские люминесцирующие экраны делают видимым невидимое изображение, создаваемое рентгеновскими лучами, прошедшими через тело больного, позволяют сразу видеть больной орган. Одновременно они защищают врача от облучения.

Популярные книги

Внешники такие разные

Кожевников Павел
Вселенная S-T-I-K-S
Фантастика:
боевая фантастика
попаданцы
5.00
рейтинг книги
Внешники такие разные

Искатель боли

Злобин Михаил
3. Пророк Дьявола
Фантастика:
фэнтези
6.85
рейтинг книги
Искатель боли

Кодекс Охотника. Книга XIV

Винокуров Юрий
14. Кодекс Охотника
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Кодекс Охотника. Книга XIV

Верь мне

Тодорова Елена
8. Под запретом
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Верь мне

Крепость надежды

Михайлов Дем Алексеевич
1. Изгой
Фантастика:
фэнтези
9.31
рейтинг книги
Крепость надежды

Хочу тебя любить

Тодорова Елена
Любовные романы:
современные любовные романы
5.67
рейтинг книги
Хочу тебя любить

На границе империй. Том 8. Часть 2

INDIGO
13. Фортуна дама переменчивая
Фантастика:
космическая фантастика
попаданцы
5.00
рейтинг книги
На границе империй. Том 8. Часть 2

Тайный наследник для миллиардера

Тоцка Тала
Любовные романы:
современные любовные романы
5.20
рейтинг книги
Тайный наследник для миллиардера

Последний попаданец 12: финал часть 2

Зубов Константин
12. Последний попаданец
Фантастика:
фэнтези
юмористическое фэнтези
рпг
5.00
рейтинг книги
Последний попаданец 12: финал часть 2

Люби меня

Тодорова Елена
7. Под запретом
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Люби меня

Измена. Я отомщу тебе, предатель

Вин Аманда
1. Измены
Любовные романы:
современные любовные романы
5.75
рейтинг книги
Измена. Я отомщу тебе, предатель

СД. Том 17

Клеванский Кирилл Сергеевич
17. Сердце дракона
Фантастика:
боевая фантастика
6.70
рейтинг книги
СД. Том 17

Низший - Инфериор. Компиляция. Книги 1-19

Михайлов Дем Алексеевич
Фантастика 2023. Компиляция
Фантастика:
боевая фантастика
5.00
рейтинг книги
Низший - Инфериор. Компиляция. Книги 1-19

На границе империй. Том 10. Часть 1

INDIGO
Вселенная EVE Online
Фантастика:
космическая фантастика
попаданцы
5.00
рейтинг книги
На границе империй. Том 10. Часть 1