Современная космология: философские горизонты
Шрифт:
1. Гамов и его сотрудники работали в рамках теории, которая имела своей целью описать происхождение всех химических элементов, включая тяжелые. Но эта теория сталкивалась с трудностями, и теоретики «совершенно не желали серьезно относиться» [56] к такой теории. Пытаясь сделать слишком многое, теория «перестала внушать доверие, которого она действительно заслуживала как теория синтеза гелия»4.
2. Недостаточный контакт между теоретиками и наблюдателями.
56
Вайнберг С. Первые три минуты. М., 1981. С. 120.
3. Но самое главное, «физикам было трудно серьезно воспринимать любую теорию ранней Вселенной». Первые три минуты «столь удалены от нас по времени, условия на температуру и плотность так незнакомы, что мы стесняемся применять наши обычные теории статистической механики и ядерной физики» [57] .
57
Вайнберг С. Первые три минуты. М., 1981. С. 123.
58
Там же. С. 124.
Таким образом, доминировали в равнодушном, скептическом отношении к реликтовому излучению психологические мотивы. Можно допустить, что какую-то роль в определенный момент сыграли позитивистские установки исследователей. Ранняя Вселенная казалась чем-то слишком удаленным от фактов.
Но фактически реликтовое излучение наблюдалось еще до официально признанной даты его открытия. В 1941 г. Мак-Келлар при изучении межзвездного газа обнаружил в спектре одной из звезд линии поглощения циана. Их свойства он объяснил наличием неизвестного излучения, которое в дальнейшем как раз и оказалось микроволновым фоновым излучением. Затем в 1955–1956 гг. микроволновое фоновое излучение из космоса наблюдал Т.А. Шмаонов в Пулкове как некий космический радиофон [59] . Но значение этих наблюдений не было своевременно понято. Они не получили никакой теоретической интерпретации и остались незамеченными космологами. Я помню о них потому, что проводил наблюдения на соседнем радиометре в то же время, что и Шмаонов (занимаясь совсем другой задачей — исследованием поляризации радиоизлучения Луны). Но, по сути, Шмаонов получил тот же самый результат, что и Пензиас с Уилсоном.
59
Шмаонов Т.А. Методика абсолютных измерений эффективной температуры радиоизлучения с низкой эквивалентной температурой // Приборы и техника эксперимента. Т. 1. 1957. С. 83–86.
К счастью, как выяснилось при любопытных обстоятельствах, опасения Г.А. Гамова о невозможности наблюдения реликтового излучения оказались неверными. В начале 60-х годов Я.Б. Зельдович выдвинул в противовес теории Гамова свою теорию «холодной Вселенной». Для выбора между этими теориями сотрудники Я.Б. Зельдовича (И.Д. Новиков и А.Г. Дорошкевич) рассчитали общий спектр интенсивности всех электромагнитных космических излучений. Выяснилось, что существует «окно», в котором интенсивность реликтового излучения превышает остальные. Отсюда следовало, что наблюдательный выбор между теориями горячей Вселенной Гамова и холодной Вселенной Зельдовича вполне реален. Но открытие Пензиаса и Уилсона произошло независимо от этого теста — совершенно случайным образом. Дело в том, что оба они были не исследователями Вселенной, а радиоинженерами лаборатории «Белл», которые не ставили перед собой научных задач. Им необходимо было проградуировать радиометр, установив нуль-пункт для шкалы измерений. Для этого они решили направить свой прибор в сторону неба — в область, лишенную ярких радиоисточников. Предполагалось, что тем самым и будет зафиксирована нулевая отметка. Но к огорчению Пензиаса и Уилсона, оказалось, что в любой точке неба измеряется некоторый радиофон с температурой около 3°К. Были предприняты многочисленные и утомительные попытки избавиться от этого ненужного радиофона и поиски объяснения его причин (вплоть до весьма экзотических, например, повышение температуры антенны связывалось с голубиным пометом в ней; это объяснение выступало, таким образом, альтернативой реликтовому излучению!). Но все было тщетно. Тогда Пензиас и Уилсон решили сообщить об обнаруженном ими факте и отправили заметку в журнал. Произошла новая случайность. Статья попала на рецензию к Р. Дике, руководившему группой исследователей, теоретически обосновавших возможность обнаружения реликтового излучения с точки зрения теории гравитации Бранса-Дике (альтернативной эйнштейновской), и собиравшемуся приступить к поискам. Пензиас и Уилсон ненамного их опередили. В свою очередь, Дике и соавторы опубликовали сообщение в том же номере журнала. Так было сделано одно из величайших открытий не только космологии, но и всей науки XX века. Вопреки современным историко-научным мифам никто не искал реликтовое излучение с целью проверки предсказания теории. Напротив, существенную эвристическую роль в его исследовании сыграл прямо противоположный мотив: желание опровергнуть эту теорию, заменив ее альтернативой — построенной в рамках релятивистской космологии теории холодной Вселенной, которая была выдвинута Я.Б. Зельдовичем. Оно произошло случайно, причем оказалось не только непредвиденным, но и «нежеланным», от него хотели избавиться всеми возможными способами. Эти обстоятельства еще раз подчеркнули убедительную силу аргументов природы в ее диалоге с наблюдателем. Наблюдения подтвердили теорию горячей Вселенной Гамова, приверженцами которой стали Я.Б. Зельдович и И.Д. Новиков. Теория холодной Вселенной была названа ими примером «полезной ошибки» [60] .
60
Зельдович Я.Б., Новиков И.Д. Строение и эволюция Вселенной. М., 1965. С. 148.
Следует отметить, что более значимой для космологии была роль открытия микроволнового фонового излучения в контексте другой оппозиции: между теорией горячей Вселенной и теорией стационарной Вселенной, драматическая схватка между которыми оказалась скоротечной. Открытие реликтового излучения оказалось «решающим экспериментом», но не потому, что с позиции стационарной Вселенной нельзя было придумывать все новые объяснения этого феномена, а потому, что в сообществе космологов произошел психологический перелом. Они как-то сразу и навсегда потеряли интерес ко всем альтернативам. Таким образом, в космологии снова повторилась ситуация, когда надежно установленный факт придал резонансное значение теории, до того вызывавшей среди теоретиков лишь равнодушие и скепсис.
Но была ли тем самым верифицирована теория Гамова и фальсифицирована теория стационарной Вселенной? Нет. Обе альтернативные теории были частично верифицированы и частично фальсифицированы, хотя и в разной степени. Основной целью, которую ставил себе Гамов, было объяснение происхождения всех химических элементов в процессе рождения (creation) Вселенной. Наиболее сильный аргумент в теории Гамова был ошибочным. Он исходил из заниженной оценки возраста Вселенной, связанной в свою очередь с ошибочным значением постоянной Н в законе красного смещения Хаббла. Получалось, что химические элементы не успевали «свариться» в звездах. Пересмотр шкалы возраста Вселенной выбил почву из-под этого аргумента. Но водород и гелий действительно имеют космологическое происхождение, и открытие реликтового излучения это подтвердило. Тем самым, теория горячей Вселенной, оказавшись неспособной решить проблему происхождения всех химических элементов, объяснила, как возникла основная часть барионного вещества Вселенной. Изюминка ситуации в том, что реликтовое излучение было непредсказанным следствием теории, основанной, в числе прочих, и на ошибочных предпосылках и оказавшейся в значительной части неверной по своему содержанию (генезис тяжелых элементов). В соответствии с наивным фальсификационизмом, такая теория должна быть отвергнута, но она оказалась — в серьезно скорректированном виде — одной из основополагающих в современной космологии, да и в науке в целом.
В структуре эмпирических знаний о реликтовом излучении Вселенной выделяются все три отмеченных уровня. Уровень непосредственно данного включает «статистические резюме измерений», доказывающих: 1) само наличие во Вселенной фонового излучения с температурой 2,73°К; 2) распределение его энергии в спектре, соответствующее закону Планка; 3) приблизительную однородность и изотропность фона излучения. Эти наблюдения оказались в определенной степени теоретически нагруженными — знаниями из области теории излучения. Наиболее существенно, однако, что лишь на последующих этапах они оказались связанными с использованием объясняющей теории.
Анизотропия реликтового излучения как наличие сравнительно мелких неоднородностей температуры (т. е. интенсивности этого излучения на небесной сфере) была теоретически предсказана еще в конце 60-х годов XX века на интерпретационном уровне. Она должна вызываться несколькими факторами: 1) эффектом Сакса-Вольфа, суть которого в том, что фотоны могут и приобретать, и терять энергию в гравитационном поле; 2) эффектом Силка — флуктуации плотности вещества должны сопровождаться флуктуациями числа фотонов; 3) эффектом Доплера — частота, т. е. энергия фотонов может меняться в зависимости от того, движутся ли они от нас или же к нам. Общей причиной всех этих эффектов, как считали теоретики, служат возмущения метрики в ранней Вселенной вблизи эпохи инфляции, так что наличие анизотропии реликтового излучения часто рассматривают как предсказание инфляционной космологии. Анизотропия реликтового излучения — источник ценнейших сведений о ранней Вселенной.
Ускоренное расширение Вселенной явилось открытием, не только совершенно неожиданным для космологов, но и прямо противоречившим их ожиданиям. Считалось вероятным, что в ходе эволюции нашей Вселенной, т. е. Метагалактики, скорость ее расширения должна уменьшаться под влиянием гравитации. Собственно говоря, эксперименты и были поставлены для того, чтобы определить величину скорости замедления. Но природа преподнесла исследователям очередной сюрприз. Оказалось, что на самом деле Вселенная расширяется с ускорением, которое началось около 6–8 млрд. лет назад (до этого Вселенная расширялась с замедлением). Это открытие было даже названо «шоковым».
Измерения велись по вспышкам Сверхновых типа 1а в далеких галактиках с помощью космического телескопа Хаббла. По форме кривой блеска такой звезды можно измерить ее светимость в максимуме, т. е. полное количество излучаемой энергии, отнесенное к стандартному расстоянию. Сравнение с наблюдаемой яркостью звезды позволяет вычислить ее расстояние (с точностью до 15 %). Далее по спектру Сверхновой измеряют ее красное смещение и, следовательно, скорость удаления галактики, в состав которой она входит. На основании этих данных можно выявить корреляции «видимая яркость — расстояние до галактики». В 1998–1999 году две группы исследователей — одна возглявлялась Б. Шмидтом и А. Рисом [61] , другая — С. Перлмутером [62] , сообщили, что наша Вселенная расширяется ускоренно. Наблюдения показали, что убывание яркости Сверхновых происходит, в среднем, быстрее, чем предсказывала стандартная модель. Очень далекие Сверхновые оказываются более яркими. Отсюда следует, что скорость галактики, в состав которой входят исследовавшиеся Сверхновые, со временем возрастает.
61
Riess Adam et al. Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant // Astronomical Jornal. V. 116. 1998. P. 1009–1038.
62
Perlmutter S, Temer М., White M. Constraining dark energy with SNela and large-scale structure // Physical Reviews Letters. V. 83. 1999. P. 670.