Современное состояние биосферы и экологическая политика
Шрифт:
В формуле (7) U, F, TS – внутренняя, свободная и связанная энергии. И еще важное следствие было установлено термодинамикой: «все процессы в природе протекают в направлении уменьшения свободной энергии и увеличения энтропии» (Губанов и др., 1978, с. 53–54).
Если в природной системе сформированы условия появления градиентов (перепады давления, разность в солености водных масс или неравномерного нагрева тела и т. д.), то такая система способна совершить работу. Она заключается в передаче тепла от более нагретого тела к холодному, возникновении движения воздушных и водных масс и др. Но при выравнивании градиентов, все наблюдаемые процессы прекратятся, энтропия системы достигнет максимума и она разрушится. Живые системы характеризуются наличием огромного
Так что же – второй закон термодинамики неприменим к живым системам?
Оказывается, что все недоразумения снимаются, если их рассматривать не как изолированные, или закрытые, а как открытые системы. Следует отметить, что теория открытых систем была разработана И. Пригожиным и другими учеными.
Открытыми системами называются все живые организмы, которые способны обмениваться с окружающей средой веществом и энергией. Из этого определения вытекает фундаментальное свойство живых систем. Оказывается, что они обладают двумя видами свободной энергии (обозначим как dE) и энтропии dЭ): dF и dS – это изменение свободной энергии и энтропии, протекающих за счет процессов жизнедеятельности внутри организма (как и в классической термодинамике), и df и ds – изменение свободной энергии и энтропии, обусловленное взаимодействием с окружающей средой:
dE = dF + df, (8)
dЭ = dS + ds.
Таким образом, если бы биосистемы не обменивались энергией и веществом с окружающей средой, то они бы неуклонно приближались к термодинамическому равновесию. Это не происходит, т. к. данный вид энергии постоянно восполняется за счет поступления из внешней среды (питательные вещества). Энтропия выводится из них путем удаления конечных продуктов обмена и теплоты. В биосистемах постоянно продуцируется положительная энтропия, а из окружающей среды в них поступает отрицательная (негэнтропия) энтропия. Анализируя (8), можно прийти к интересным закономерностям. Если изменение внутренней энтропии (d5) равно изменению отрицательной (-ds), то общее ее изменение в биосистеме равно нулю. При иных соотношениях она может увеличиваться или даже уменьшаться. Это в микроинтервалах времени, но с возрастом энтропия все же возрастает, что находится в полном соответствии со вторым началом. Естественно, что своим неразумным отношением к себе (потребление наркотиков, алкоголя, переедание и многое другое) человек способен ускорить рост внутренней энтропии, переводя систему в деградирующее состояние – гибель организма. В соответствии с закономерностью (8) можно записать критерий стационарного состояния биосистемы. Он имеет вид:
dS / dt = – ds / dt. (9)
Формула (9) понимается следующим образом: если изменение во времени внутренней энтропии равно изменению негэнтропии, то параметры системы остаются постоянными. Следовательно, такое состояние живых систем следует понимать как стационарное. Подведем итоги наших рассуждений.
1. Биосистемы представляют собой открытые термодинамические системы, которые на протяжении длительного времени могут находиться в стационарном состоянии. Свойство поддерживать параметры в неизменном состоянии называется гомеостазом. А это возможно при наличии в биосистемах механизмов управления: положительных и отрицательных обратных связей, присущих кибернетическим устройствам. Изучение свойств открытых систем позволило сформулировать основное свойство стационарного состояния (теорема Пригожина): в стационарном состоянии скорость возрастания энтропии, обусловленного протеканием необратимых процессов, имеет положительное и минимальное из возможных значений. Так как энтропия является мерой рассеивания свободной энергии, то в стационарном состоянии ее значение минимально.
2. Биосистемы стремятся работать в наиболее выгодных энергетических режимах. Если же она выведена из равновесного состояния, то в самой биосистеме начинают работать процессы, стремящиеся вернуть ее в первоначальное состояние,
3. Таким образом, в процессе эволюции живых систем, включая организмы, экосистемы и биосферу в целом, ими была выработана важнейшая термодинамическая особенность – это способность их создавать и поддерживать высокую степень внутренней упорядоченности, т. е. состояние с низкой энтропией. Низкая энтропия достигается постоянным и эффективным рассеянием легко используемой энергии (света, пищи) и превращением ее в энергию, используемую с трудом (например, в тепловую).
4. Упорядоченность экосистемы, т. е. сложная структура биомассы, поддерживается за счет дыхания всего сообщества, которое постоянно откачивает из сообщества неупорядоченность.
6.3. Второй закон термодинамики и правило десяти процентов
Принято считать, что отношение произведенной работы к изменению свободной энергии (dF), израсходованной на эту работу, называется коэффициентом полезного действия (КПД)
КПД = A/dF 1. (10)
Действительно, при совершении работы в живых организмах (биохимические и биофизические процессы, сокращение мышц и т. д.) часть свободной энергии рассеивается в тепло, а следовательно их КПД меньше единицы.
Ответим с позиций второго закона термодинамики на вопрос: а почему в экосистемах невозможно большое количество трофических уровней, какова величина их КПД? Для этого рассмотрим поток энергии, проходящий через различные трофические уровни пищевой цепи.
Обычно первый уровень трофической цепи представлен продуцентами, т. е. зелеными растениями, которые создают первичную продукцию. Из общего количества ФАР лишь часть ее поглощается хлорофиллом, который осуществляет синтез органического вещества. Большая часть рассевается и превращается в теплоту. Чистая продукция (см. формулу 5) служит пищей травоядным в виде реального (суточного или годового и т. д.) рациона, которая усваивается организмом и переходит в ассимилированную ее часть. Следовательно, первичная продукция преобразуется во вторичную, представленную организмами разного трофического уровня. Опять же, как и в случае с зелеными растениями, часть ассимилированной пищи идет на рост животного, а большая часть тратится на обменные процессы и другие нужды. Сформированную чистую продукцию травоядных потребляют хищники, общая продукция которых состоит из чистой (прирост массы тела) и затрат на дыхание. Приведем балансовое равенство общего бюджета энергии:
W = qR + T, (11)
где W, q, R, T – соответственно, прирост массы тела животного, коэффициент усвояемости пищи, рацион и траты на обменные процессы.
Если сопоставить формулы (5) и (11), то нетрудно заметить, что траты энергии (Т) ассимилированной пищи (во всех ее видах) по существу аналогичны величине связанной энергии (в формуле 9), т. е. той ее части, которая не может быть использована в последующих процессах функционирования систем.
При каскадном переносе энергии, с одного трофического уровня на другой ее уровень в среднем переходит 10 % энергии. Происходит это в силу второго закона термодинамики. Потери на дыхание, энергия, которая не может быть использована последующим трофическим уровнем. Это общеприродная закономерность и, независимо от того, поедали бы зеленые растения травоядные, а последних – хищники, в этом процессе природой был поставлен запрет.
Приведем ряд коэффициентов, используемых при изучении продукционных процессов.
Отношение ассимилированной пищи (A2) на данном трофическом уровне (n) к ассимиляции (A1) на предшествующем трофическом уровне (n – 1) называется экологической эффективностью экосистемы, т. е.
экологическая эффективность = (A2/A1) 100.
Коэффициент использования ассимилированной пищи на рост, в соответствии с закономерностью (13), имеет вид: