Современное состояние биосферы и экологическая политика
Шрифт:
Из имеющихся фактов становления живых организмов наиболее значимыми являются исследования, посвященные возникновению мембран. Действительно, заключив органический коллоид в «своеобразную» оболочку, которая отграничила его от окружающей среды, в эволюции живых систем произошел еще один существенный прорыв – это возможность поддерживать (несовпадающей по своим свойствам с абиогенными веществами) непрерывный процесс обмена веществ и следовательно своего «стационарного» существования. Это когда скорость возрастания энтропии, обусловленная протеканием необратимых процессов, имеет положительное и минимальное из возможных значений (теорема И. Пригожина). Живое вещество обрело свойство осуществлять собственный метаболизм независимо от окружающей среды. Точнее, законы термодинамики не отрицались, но они стали реализовываться в открытых системах иначе.
Уделим
В связи с этим особая роль отводится мембранам, которые стали главными и необходимыми условиями возникновения жизни. Как же образовались мембраны, точнее, как все происходило? Напомним современные представления о строении мембран.
Клеточная, или плазматическая, мембрана – это барьер, отделяющий цитоплазму всех клеток про– и эукариот от окружающей среды. Он состоит из липидов, белков и углеводов. Мембранами окружены некоторые внутриклеточные органеллы – митохондрии, хлоропласты, эндоплазматический ретикулум, аппарат Гольджи, лизосомы и ядро.
Липиды природных мембран в основном представлены фосфолипидами, у которых одна или две жирнокислые цепи этерифицированы либо глицеролом (трехатомный спирт), либо сфингозином (аминоспиртом), а к третьему атому углерода присоединена фосфатная группа, с которой в свою очередь связана полярная группа, например холин.
Липидный биослой – это структура, характерная для плазматических мембран всех живых клеток. Толщина этого слоя составляет примерно 45 нм в зависимости от типов присутствующих в нем жирных кислот. Неполярные хвосты липидных молекул обращены друг к другу, а полярные головки остаются снаружи биослоя, образуя внутреннюю и наружную гидрофильные поверхности.
Кроме липидов в клеточной мембране присутствуют два типа белков – интегральные и периферические.
Интегральные белки пронизывают мембрану насквозь. У них есть центральное гидрофобное ядро, взаимодействующее с жирнокислотными цепями, и гидрофильные концы, контактирующие с клеточным содержимым и с окружением.
Периферические белки не пронизывают мембрану и связаны с ней менее прочно. Кроме этих и других черт, всем природным мембранам присуща асимметрия. Это обусловлено тем, что липидные молекулы, различающиеся в основном своими головными группами, распределены между двумя слоями биослоя асимметрично.
Клетку принято рассматривать как пространство, окруженное мембраной, в котором возможно каталитическое превращение органических веществ и трансформация энергии. Логично предположить, что для осуществления вышеупомянутых функций клетка должна была быть отграниченной от окружающей среды мембраной. В этой связи представляется целесообразным привести ряд примеров, подтверждающих возникновение клеточной организации на нашей планете.
4.2. Возникновение клеточной организации
Учеными было доказано, что после испарения воды из реакционного объема в амфифильных липидоподобных и липидных молекулах формируются жидкокристаллические агрегаты, в которых молекулы расположены периодическими слоями, как в смектических кристаллах. Такие липотропные жидкокристаллические фазы, дающие в поляризованном свете характерную оптическую картину, при последующем разбавлении легко превращаются в мембраноподобные структуры за счет полиморфных переходов (Чистяков, Селезнев, 1977, с. 38–45). Эти и другие исследования подтвердили тот факт, что на самых ранних стадиях химической эволюции могли возникнуть достаточно простые липидоподобные и липидные молекулы, спонтанно образующие мембранные структуры. Следовательно, и формирование систем, подобных протоклеткам, могло предшествовать синтезу более сложных полимерных молекул. Имеются все основания считать, что в период биопоэза (его первого этапа) на Земле за счет высоких температур
Таким образом, в первичном «органическом бульоне», покрывшем Землю, процесс образования белковых молекул шел за счет Z-аминокислот. Очень рано появились металлоорганические комплексы, в том числе железопорфирины, которые могли играть роль мощных катализаторов в реакциях окисления с выделением энергии. Синтез белковых молекул, вероятно, являлся уже достаточно сложным процессом к тому времени, когда сформировались механизмы трансляции. Белковые «протоклетки» могли образовываться путем формирования поверхностей с избирательными свойствами. Образование нуклеиновых кислот шло независимо от белков, а их комплексы возникли уже позже. Первые организмы представляли собой агрегаты нуклеопротеидов, способных к самоудвоению (дубликации) и связанных с другими белками, осуществляющими ферментативное расщепление органических веществ с выделением энергии. Эти первичные гетеротрофные организмы обладали свойствами, составляющими основу живого. Для них было характерно следующее:
1) способность использовать энергию макроэргических фосфатных связей для выполнения различных жизненных функций;
2) ступенчатый перенос электронов в промежуточном обмене;
3) использование металлопротеидов в качестве катализаторов окислительных процессов;
4) включение Z-аминокислот в естественные белки;
5) активный транспорт ионов через клеточную мембрану;
6) использование одних ионов внутри клеток и удаление других;
7) избирательная проницаемость мембран;
8) регуляция белкового синтеза нуклеиновыми кислотами и многие другие свойства, присущие живым организмам.
Закончившийся процесс формирования первичных организмов предоставил им единственный источник энергии – это питание за счет друг друга. Но насыщаемость океана органикой была ограничена. Поэтому перед эволюцией стоял выбор: или остановиться на этом этапе – в таком случае дальнейшее совершенствование биоты стало бы невозможным – или найти иной вариант обеспечения организмов неиссякаемым источником пищи.
В отличие от консервативной модели А. И. Опарина, основанной на вероятности спонтанного образования белковых агрегатов, на современном этапе развития науки предлагается иной механизм образования предшественников жизни – «абиогенного синтеза сравнительно простых липидоподобных молекул, образующих замкнутые слоистые системы» (Дреймер и др., 1989, с. 4).
Глава 5
Современное состояние биосферы Земли
5.1. Границы биосферы
Биосфера является одним из трех (гидросфера, атмосфера и литосфера) компонентов климатической системы. Ее можно уподобить тонкой пленке, покрывающей поверхность нашей планеты. Плотность органического вещества равна 1 г/см2. Для сравнения, средняя плотность земной коры – 2,7 г/см3, а планеты – 5,52 г/см3. Несмотря на то что по свой массе живое вещество в 1000 раз меньше массы атмосферы и других геосфер, ее активность огромна. Ранее уже отмечалось, что основатель учения о биосфере В. И. Вернадский открыл управляющую кибернетическую систему биосферы – живое вещество (совокупность всех живых организмов на Земле), которое, подкрепленное солнечной энергией, превратило ее в энергию связи химических элементов. За многолетнюю историю живое вещество в корне изменило и преобразовало планетное вещество в особое, характерное только для нашей планеты вещество – биосферу. В силу особенностей строения планеты, распределения биогенных элементов, неравномерного нагрева поверхности Земли лучами Солнца и т. д. сгущения живого вещества на планете, как по массе, так и по биоразнообразию, не однородны. Границы биосферы приведены в табл. 1.