Чтение онлайн

на главную

Жанры

Страницы истории науки и техники
Шрифт:

Как видно из рис. 58, ракета имеет два основных элемента: камеру сгорания и сопло. Существуют различные конструкции ракет, но любая из них имеет эти два обязательных элемента. При пуске ракеты с ЖРД в камеру сгорания начинают поступать топливо и окислитель. В результате горения топлива образуются продукты сгорания, обладающие высокой температурой: химическая энергия топлива превращается в тепловую. Продукты сгорания вследствие разности давлений в камере и во внешнем пространстве с большой скоростью вытекают через сопло наружу — происходит преобразование тепловой энергии в механическую (кинетическую) энергию струи газа (продуктов сгорания). Вытекающая, как уже сказано, с большой скоростью, достигающей 3000–4500 м/с, струя газов создает, согласно закону сохранения

импульса, реактивную силу тяги. В этом вся суть дела. Ракета, которой в космическом пространстве «не от чего отталкиваться», движется в результате образующейся реактивной силы.

Чрезвычайно важно отметить, что скорость, развиваемая ракетой (а вместе с ней и всем космическим летательным аппаратом) на активном участке пути, т. е. на том сравнительно коротком участке, пока работает ракетный двигатель, должна быть достигнута очень и очень высокая.

Существует понятие так называемых космических скоростей: первой, второй и третьей. Первой космической скоростью называется такая скорость, при достижении которой тело (космический аппарат), запущенное с Земли, может стать ее спутником. Если не учитывать влияния атмосферы, то непосредственно над уровнем моря первая космическая скорость составляет 7,9 км/с и с увеличением расстояния от Земли уменьшается. На высоте 200 км от Земли она равна 7,78 км/с. Практически первая космическая скорость принимается равной 8 км/с.

Для того чтобы преодолеть притяжение Земли и превратиться, например, в спутник Солнца или достигнуть какой-нибудь другой планеты Солнечной системы, запускаемое с Земли тело (космический аппарат) должно достигнуть второй космической скорости, принимаемой равной 11,2 км/с.

Третьей космической скоростью у поверхности Земли телу (космическому аппарату) необходимо обладать в том случае, когда требуется, чтобы оно могло преодолеть притяжение Земли и Солнца и покинуть Солнечную систему. Третья космическая скорость принимается равной 16,7 км/с.

Рис. 59. Схема полета «Зонда-6» с облетом Луны

Штриховая линия — орбита спутника и траектория движения без коррекции.

Космические скорости по своему значению огромны. Они в несколько десятков раз превышают скорость звука в воздухе. Только из этого ясно видно, какие сложные задачи стоят в области космонавтики.

Большое значение имеет расчет траекторий полета космических аппаратов, в котором должна преследоваться основная цель — максимальная экономия энергии. При расчете траектории полета космического аппарата необходимо определять наиболее выгодное время и по возможности место старта, учитывать аэродинамические эффекты, возникающие в результате взаимодействия аппарата с атмосферой Земли при старте и финише, и многое другое.

Многие современные космические аппараты, особенно с экипажем, имеют относительно малые бортовые ракетные двигатели, главное назначение которых — необходимая коррекция орбиты и осуществление торможения при посадке. При расчете траектории полета должны учитываться ее изменения, связанные с корректировкой. Большая часть траектории (собственно, вся траектория, кроме активной ее части и периодов корректировки) осуществляется с выключенными двигателями, но, конечно, под воздействием гравитационных полей небесных тел. На рис. 59 в качестве примера представлена орбита автоматической межпланетной станции «Зонд-6», запущенной 10 ноября 1968 г. с территории Советского Союза, облетевшей Луну и сделавшей фотографирование обратной ее стороны; 17 ноября спускаемый аппарат станции приземлился в заданном районе Советского Союза.

В создании летательных космических аппаратов наиболее трудной задачей является, вероятно, разработка и производство ракетного двигателя. Космические скорости, как уже говорилось, очень большие, а летательный аппарат должен достигнуть одной из

них. Поэтому ракетный двигатель должен иметь огромную мощность, измеряемую десятками миллионов киловатт.

Оказывается, что одноступенчатая ракета не в состоянии придать аппарату скорость, равную первой космической скорости, а тем более второй и третьей. Дело заключается в том, что для достижения первой космической скорости одноступенчатой ракетой вес горючего и окислителя должен был бы составить 93–96 % веса всей ракеты в целом. Создать такую конструкцию практически невозможно.

Поэтому приходится применять составные ракеты (многоступенчатые). На рис. 60 представлена принципиальная пакетная схема многоступенчатой (составной) ракеты. Действие составной ракеты, состоящей из нескольких ступеней, заключается в том, что отдельные ракеты (ступени) включаются в работу одна за другой, последовательно, причем после израсходования топлива одной ступени и завершения работы ее ракетного двигателя ступень отделяется. Таким образом, по мере отделения отработавших ступеней вес ракеты в целом уменьшается, а это значит, что полезный груз при том же общем запасе топлива может получить большую скорость, чем в случае одноступенчатой ракеты.

Составные ракеты, конструкция которых может быть различной, способны развивать первую, вторую и третью космические скорости.

Следует отметить, что теория составных ракет принадлежит Циолковскому.

Большинство летательных космических аппаратов (особенно с экипажем) имеют на борту источник тока (солнечную батарею, состоящую из фотоэлементов [371] , или топливные элементы [372] , или электрические аккумуляторы), который служит для питания ряда систем: терморегулирования, радиосвязи и радиотелеметрии, бортовой ЭВМ, ориентации, жизнеобеспечения и некоторых других.

371

Высокая стоимость фотоэлементов в данном случае значения не имеет, так как их мощность и «тираж» относительно невелики.

372

Топливный электрохимический генератор, в котором происходит прямое преобразование химической энергии в электрическую; в настоящее время находят применение практически только так называемые кислородно-водородные топливные элементы, требующие для функционирования непрерывной раздельной подачи водорода и кислорода, что, конечно, дорого, поэтому они пока иногда применяются лишь в космических аппаратах.

В Советском Союзе среди организаций и отдельных ученых и конструкторов, работы которых (вслед за работами Циолковского) лежат в основе современной космонавтики, следует назвать Газодинамическую лабораторию (ГДЛ), созданную в 1921 г., в которой под руководством выдающегося советского ученого и конструктора Валентина Петровича Глушко (р. 1908) в 1929 г. были начаты разработки жидкостного и электрического ракетных двигателей, и Группу изучения реактивного движения (ГИРД), образованную в 1932 г., сыгравшую наряду с ГДЛ под руководством выдающегося советского ученого и конструктора Сергея Павловича Королева (1907–1966) основную роль в зарождении советского ракетостроения. В конце 1933 г. ГДЛ и ГИРД были объединены в Реактивный научно-исследовательский институт (РНИИ).

Если начало космической эры на Земле связывают, как уже говорилось, с запуском 4 ноября 1957 г. в СССР первого искусственного спутника Земли и, следовательно, с достижением спутником первой космической скорости, то второй важнейший этап в развитии космонавтики — день первого космического полета человека.

12 апреля 1961 г. советский гражданин Юрий Алексеевич Гагарин (1934–1968), ставший известным всему миру, совершил космический полет, облетев Землю на корабле «Восток» за 1 ч 48 мин. Это была большая победа человеческого гения, новая страница развития космонавтики.

Поделиться:
Популярные книги

Последняя Арена 7

Греков Сергей
7. Последняя Арена
Фантастика:
рпг
постапокалипсис
5.00
рейтинг книги
Последняя Арена 7

Пенсия для морского дьявола 4

Чиркунов Игорь
4. Первый в касте бездны
Фантастика:
попаданцы
5.40
рейтинг книги
Пенсия для морского дьявола 4

#Бояръ-Аниме. Газлайтер. Том 11

Володин Григорий Григорьевич
11. История Телепата
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
#Бояръ-Аниме. Газлайтер. Том 11

Сумеречный Стрелок 2

Карелин Сергей Витальевич
2. Сумеречный стрелок
Фантастика:
городское фэнтези
попаданцы
аниме
5.00
рейтинг книги
Сумеречный Стрелок 2

Совершенный: пробуждение

Vector
1. Совершенный
Фантастика:
боевая фантастика
рпг
5.00
рейтинг книги
Совершенный: пробуждение

Новая мама в семье драконов

Смертная Елена
2. В доме драконов
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Новая мама в семье драконов

Возвышение Меркурия. Книга 5

Кронос Александр
5. Меркурий
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Возвышение Меркурия. Книга 5

Бастард Императора. Том 4

Орлов Андрей Юрьевич
4. Бастард Императора
Фантастика:
попаданцы
аниме
фэнтези
фантастика: прочее
5.00
рейтинг книги
Бастард Императора. Том 4

Господин следователь. Книга 2

Шалашов Евгений Васильевич
2. Господин следователь
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Господин следователь. Книга 2

Провинциал. Книга 4

Лопарев Игорь Викторович
4. Провинциал
Фантастика:
космическая фантастика
рпг
аниме
5.00
рейтинг книги
Провинциал. Книга 4

Сбой Системы Мимик! Академия

Северный Лис
2. Сбой Системы!
Фантастика:
боевая фантастика
юмористическая фантастика
5.71
рейтинг книги
Сбой Системы Мимик! Академия

Кодекс Охотника. Книга ХХ

Винокуров Юрий
20. Кодекс Охотника
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Кодекс Охотника. Книга ХХ

Хозяйка дома в «Гиблых Пределах»

Нова Юлия
Любовные романы:
любовно-фантастические романы
5.75
рейтинг книги
Хозяйка дома в «Гиблых Пределах»

Вторая жизнь майора. Цикл

Сухинин Владимир Александрович
Вторая жизнь майора
Фантастика:
героическая фантастика
боевая фантастика
попаданцы
5.00
рейтинг книги
Вторая жизнь майора. Цикл