Страницы истории науки и техники
Шрифт:
Рис. 60. Принципиальная схема многоступенчатой составной ракеты.
1 — топливные отсеки; 2 — реактивные двигатели; 3 — полезный груз; 4 — головной обтекатель; 5 — отсек аппаратуры управления; 6 — силовые узлы связи ступеней.
Рис. 61. Схема ядерного ракетного двигателя.
1 — бак с жидким водородом; 2—насос; 3 — турбина для привода насоса; 4 — тепловыделяющие элементы ядерного реактора; 5 — сопло; в — защитный экран.
После этого
Большим достижением, можно сказать, третьим историческим событием, в развитии космонавтики была лунная экспедиция, происходившая 16–24 июля 1969 г., в которой участвовали три американских космонавта (или, как говорят в США, астронавта) — Н. Армстронг, Э. Олдрин и М. Коллинз, — двое из которых (Н. Армстронг и Э. Олдрин) высаживались на поверхность Луны и пробыли на ней 21 ч 36 мин.
Каких же новых больших событий, новых исторических страниц можно ожидать в развитии космонавтики? Конечно, дать сколько-нибудь развернутый ответ очень трудно. Послушаем высказывания ученых.
Уже упоминавшийся выше один из крупнейших специалистов в области космонавтики, В. П. Глушко, пишет: «Начало 2-й половины XX в. ознаменовалось выходом человека в космос… Наша Родина открыла дорогу в космос^ Советский Союз первый осуществил полеты искусственных спутников Земли, Солнца, Луны, автоматических станций к Луне, Венере и Марсу, пилотируемых одноместных и многоместных кораблей, выход космонавта из корабля в открытый космос. Советские станции впервые достигли поверхности Луны и Венеры, сфотографировали обратную сторону Луны, осуществили мягкую посадку на Луну и передали на Землю изображение лунной панорамы. Первые мужчина и женщина, совершившие одиночные и групповые полеты в космосе, — граждане СССР» [373] .
373
Глушко В. П. Предисловие к первому изданию, — В кн.: Космонавтика: Маленькая энциклопедия. 2-е изд., доп. М., 1970, с. 5.
И немного дальше В. II. Глушко пишет: «В эти дни [374] во многих странах происходил переход от теоретических исследований, основоположником которых был К. Э. Циолковский, к лабораторным. Начали работать первые жидкостные ракетные двигатели, полетели первые жидкостные ракеты. Потребовалось около 30 лет упорного труда для создания первоосновы ракетной техники — мощных жидкостных ракетных двигателей с достаточно высокими показателями эффективности и надежности. Рождение этих двигателей открыло путь для разработки ракет различного назначения, решающих задачи освоения космоса» [375] .
374
В. П. Глушко имеет в виду период приблизительно 1928–1932 гг.
375
Там же, с. 6.
И далее В. П. Глушко пишет: «Однако ограничение возможности жидкостных ракет для решения задач дальних полетов в космос заставляют форсировать работы ведущиеся в различных странах по созданию ядерных и электрических ракетных двигателей. Эффективное сочетание на ракете жидкостных и электрических ракетных двигателей расширит энергетические возможности, и долгое время такая ракета будет являться основным средством для полетов в пределах нашей Солнечной системы».
Ясная точка зрения. К сказанному необходимо добавить, что ядерный ракетный двигатель, схема которого |(с твердофазной активной зоной) показана на рис. 61, представляет собой ракетный двигатель, рабочим телом которого является какое-либо вещество (например, водород), а теплом для нагревания рабочего тела служит энерговыделение активной зоны ядерного реактора. Из приведенной схемы видно, что жидкий водород из бака I поступает в насос 2, приводом которому служит газовая турбина 3. Жидкий водород омывает снаружи ядерный. реактор и сопло, при этом нагревается и испаряется. Основная масса теперь уже газообразного водорода протекает через реактор, омывая его тепловыделяющие элементы 4 и за счет этого нагревается еще более. Нагретый газообразный водород поступает в сопло 5, в котором он расширяется и вытекает с большой скоростью наружу, создавая необходимую тягу.
Рис. 62. Схема электротермического ракетного двигателя.
1 — подвод рабочего тела; 2 — камера нагрева и сопло; 3 — нагревающие элемент; 4 — опора нагревающего элемента.
Необходимо также сказать несколько слов об устройстве электрического ракетного двигателя. Напомним, что мощность любого ракетного двигателя в конце концов определяется температурой газа, вытекающего через сопло, и массой этого газа. Жидкостные ракетные двигатели, как об этом уже говорилось, имеют в этом отношении определенные ограничения (трудности с увеличением забираемого с Земли количества топлива и окислителя, большой расход тепла при температуре порядка 3000 К и выше на диссоциацию газа [376] и некоторые другие). Источником энергии электрического ракетного двигателя является бортовое устройство, вырабатывающее электрическую энергию (электрический генератор). До тех пор пока это устройство остается небольшим по своей мощности (солнечные или аккумуляторные батареи, современные топливные элементы), электрический ракетный двигатель, естественно, также имеет малую мощность, хотя в случае применения солнечных батарей может работать весьма долго. Такие установки используются для коррекции траектории и ориентации космических аппаратов, питания бортовых приборов и т. д. Важно заметить, что такие установки при малой силе тяги (в тысячи раз меньшей веса ракеты, почему они и не в состоянии вывести аппарат на орбиту искусственного спутника Земли)1 могут иметь огромную скорость истечения рабочего тела из сопла (10—100 км/с).
376
Диссоциация — распад частиц газа (молекул), происходящий при повышении температуры, как правило, с большим потреблением тепла.
Если же на борту космического летательного аппарата находилась бы ядерно-энергетическая установка достаточно большой мощности, то ее функции в сочетании с жидкостным ракетным двигателем могли бы быть расширены.
Электрические ракетные двигатели разделяются на электротермические, электростатические (ионные) и электромагнитные (плазменные). Мы кратко остановимся только на одном из них — электротермическом; его схема показана на представленном рис. 62. Рабочее тело с малой молекулярной массой (например, водород, Н2, аммиак N2H4) подается через патрубок 1 в камеру нагрева 2, переходящую в сопло. Камера нагрева и сопло выполняются из какого-либо жаростойкого материала, например вольфрама. В качестве нагревательного элемента служит жаростойкая (например, вольфрамовая) проволока 3, ток к которой подается от бортового генератора.
Специалисты считают также, что в дальнейшем развитии космонавтики важнейшее место займут долговременные орбитальные станции, использование которых является, как известно, одним из направлений космических исследований в СССР. Именно на этом пути могут быть сделаны новые исторические шаги в космонавтике.
Специалисты США, по крайней мере в настоящее время, особое внимание уделяют созданию и запуску крылатых летательных космических аппаратов многоразового использования. Вполне возможно, что на этом пути исследования космоса будут получены результаты большого значения.
Мы приводим выдержку из статьи А. П. Александрова: «Выход людей за пределы атмосферы нашей планеты — одно из потрясающих событий нашего времени, связанное с именем замечательного советского ученого, Главного конструктора ракетно-космических систем, дважды Героя Социалистического Труда, академика Сергея Павловича Королева. Деятельность С. П. Королева и значение ее невозможно переоценить.
Мне не пришлось непосредственно работать с Сергеем Павловичем, но по ряду вопросов мы с ним встречались. Мы обсуждали различные виды ракетного топлива, возможность применения ядерных двигателей в ракетной технике. Нам обоим были интересны довольно многочисленные проблемы. Чтобы поговорить по этим вопросам, я приехал в организацию, которой руководил Сергей Павлович. Сначала он показал мне множество разработок, проведенных его организацией, а затем пригласил в свой кабинет. Там были развешаны чертежи, по которым он мне рассказал о планах проникновения в космическое пространство, познакомил с расчетами и траекториями различных полетов— к Луне, облет Луны, на Венеру, к Марсу. Мне казалось, что я попал в какую-то совершенно фантастическую ситуацию. Надо сознаться, что хотя я не впервые увидел сложные технические новинки и проекты, но все увиденное там произвело на меня глубочайшее впечатление. Как будто я попал в невероятный фантастический мир. Даже не верилось, что можно в столь короткие сроки и человеческими силами решить подобные задачи.