Строение и законы Вселенной
Шрифт:
Здесь ясно просматривается интуитивное представление Лейбница о неоднозначности положения о «замороженной» (только одной) Вселенной. Однако на том этапе развития науки не представлялось возможным более глубоко рассмотреть глобальные вопросы мироздания, так как не было разработанного математического аппарата теории множеств, причинно-следственных связей, принципов неопределенности, силовых взаимодействий и т. д.
Попытки осмысления вопроса бытия (строения Вселенной) не прекращались и далее, но в основном сводились к формальным логическим или философским обобщениям или к умозрительным заключениям (типа фантазий К. Э. Циолковского, Н. Ф. Федорова и др.). Мешало отсутствие проработанной
В конце XIX-начале XX вв. в связи с ускорением технического прогресса распространилось мнение о «всесилии науки» и возможности механического решения многих философских и социологических проблем. Так, Циолковский и Федоров на основе каких-то неизвестных (и им самим в том числе) технических методов предполагали восстановить физические и психические структуры всех живших на Земле людей. Поскольку места для воскрешения явно не хватало, предлагалось заселить планеты и соседние звездные системы. Действительными достижениями этих ученых явились разработки некоторых направлений теорий реактивного движения и искусственных поселений в космосе.
Лобачевский и Риман, создавшие структуры многомерной Вселенной, усложнили задачу, но тоже не дали ответа на вопрос.
Наибольший прогресс в изменении взглядов на строение Вселенной был достигнут в XX в. в работах Альберта Эйнштейна и других физиков, показавших пути развития материи в крайних микро- и макровзаимодействиях. Впрочем, Эйнштейн поддался всеобщему искушению и пытался вывести некое «универсальное уравнение», в которое в виде частности включались бы законы Вселенной. К данной цели можно подходить все ближе и ближе, однако окончательное решение объективно невозможно, так как наблюдатель и его разум всегда являются и будут являться частью системы (Вселенной) и не смогут выйти за ее граничные условия. После нескольких лет безуспешных попыток вывести «универсальное уравнение» это понял и сам Эйнштейн.
Р. Фейнман предложил модель осознаваемой нами Вселенной в виде единой частицы (практически та же монада Лейбница), которая на разных этапах своего развития (движения) проходит через трехмерное пространство в прямом и обратном времени. Проекции этой частицы, существующей в условном «четырехмерном мире» (в некой «Единой реальности»), и составляют видимый нами мир.
К понятию «четырехмерный» (а равно и N-мерный) мир в физическом воплощении стоит относиться с большой осторожностью. Следует сразу заметить, что четы-рехмерный (и более) мир дает непредсказуемое состояние Вселенной, с нашей точки зрения, и относительно тех законов, что описываются в существующей ныне науке, то есть в четырехмерных и более мирах становятся возможными любые явления, противоречащие нашей реальности.
Последние разработки квантово-геометрической картины Вселенной с особыми точками, где постулированные в настоящее время законы природы нарушаются, практического подтверждения пока не получили и в основном, вероятнее всего, являются неверными. С их помощью можно лишь гипотетически объяснить некоторые математические модели Вселенной, которые также далеки от реальной картины и многие из которых основаны на допущениях — недостаточно обоснованном выборе граничных условий авторами этих теорий. Одной из причин сомнительности многих теорий является недостаточно четкое понимание разработчиками разницы между аналоговым и цифровым подходами и возможностями каждого из методов.
Общая структура Вселенной
Наблюдаемой Вселенной мы называем все множество явлений, законов, пространств и т. д., которое воспринимается человеком с помощью непосредственного контакта, через технические устройства и любые системы передачи информации. В дальнейшем для удобства изложения весь этот комплекс понятий мы будем называть системой.
Наиболее вероятно, что законы развития системы едины для всех ее областей. Видимые или предполагаемые (в том числе и в виде математических расчетов) нарушения функционирования системы определяются либо неполнотой аналоговых критериев, либо наложением иных граничных условий. Поэтому в подавляющем большинстве случаев подобные несоответствия устраняются при детальном (и непредвзятом) изучении явлений и служат для уточнения параметров граничных условий и для более общего формулирования законов развития Вселенной.
В математическом аспекте обязательно должна проверяться и соблюдаться непротиворечивость физических представлений выводам теории множеств, причинности, достаточности и вероятности.
При математическом рассмотрении граничных условий возможно изменение (попадание) обратного времени. Здесь обязательно следует учесть тот факт, что при изменении знака «+» на знак «-»на границе с другой стороны уравнения это может не соответствовать изменению «-» на «+», то есть симметрия уравнений имеет два уровня: в критической точке идут два разветвления и неочевидно, что «-» на «-» обязательно дает «+», а «+» на «~» дает «-».
Следующим вопросом является уточнение физического содержания Вселенной.
Традиционное и хорошо зарекомендовавшее себя при решении большей части практических вопросов разделение на вещество и поле несет определенное противоречие в себе самом: поле соответствует аналоговому представлению о структуре Вселенной, а вещество поддается численному дискретному выделению элементов в подмножества по наборам каких-либо признаков. Такое положение вещей привносит в науку некоторый дуализм, который было бы желательно преодолеть.
Более общим и единым представлением стало бы рассмотрение Вселенной в виде совокупности полей, что вполне согласуется с принципом неопределенности.
Качествами любого поля являются источник поля, волна распространения, непрерывно изменяющаяся структура (монотонно, волнообразно и т. д.), граничные области существования, резонансные точки, или области (где поле усиливается/ослабевает или компенсируется), и способность взаимодействия с полями другой физической природы.
В основе любой частицы вещества лежит более или менее изученная полевая волновая функция.
Примером может служить модель атома, где субатомные частицы представлены в виде полевых волновых пакетов, имеющих граничные условия существования, вне которых они воспринимаются как элементы вещества. Существование множества таких структур в виде одинаковых атомов, молекул и т. д., вероятнее всего, связано с тем, что Вселенная образована множеством полей, где в точках резонанса (флуктуации, сгущения, пика или в иных особых точках) выполняются условия для продолжительного существования устойчивой физической структуры, которая воспринимается нами как вещество. Вопрос об энергиях, необходимых для создания и поддержания этих полей, будет рассмотрен далее. Информация о процессах, происходящих в данных полях, находится в самих полях и воспринимается нами как закон природы.