Структура научных революций
Шрифт:
Некоторые учёные, хотя история едва ли сохранит их имена, без сомнения, были вынуждены покинуть науку, потому что не могли справиться с кризисом. Подобно художникам, учёные-творцы должны иногда быть способны пережить трудные времена в мире, который приходит в расстройство, — в другом месте я описал эту необходимость как «необходимое напряжение», включённое в научное исследование [84] . Но такой отказ от науки в пользу другой профессии, я думаю, является единственной формой отказа от парадигмы, к которому могут привести контрпримеры сами по себе. Как только исходная парадигма, служившая средством рассмотрения природы, найдена, ни одно исследование уже невозможно в отсутствие парадигмы, и отказ от какой-либо парадигмы без одновременной замены её другой означает отказ от науки вообще. Но этот акт отражается не на парадигме, а на учёном. Своими коллегами он неизбежно будет осуждён как «плохой плотник, который в своих неудачах винит инструменты».
84
T. S. Kuhn. The Essential Tension: Tradition and Innovation in Scientific Research, in: «The Third (1959) University of Utah Research Conference on the Identification of Creative Scientific Talent», ed. Calvin W. Taylor (Salt Lake City, 1959), p. 162—177. Для сравнения о подобном явлении в искусстве см.: F.Barron. The Psychology of Imagination. — «Scientific American», CXCIX, September 1958, p. 151—166, esp. 160.
Ту же самую точку зрения можно сформулировать по меньшей мере столь же эффективно и в противоположном варианте: не существует ни одного исследования без рассмотрения контрпримеров. В самом деле, что отличает нормальную науку
Может ли данная ситуация представляться иначе? Такой вопрос необходимо приводит к историческому и критическому анализу философских проблем, рассмотрение которых не входит в задачи настоящего исследования. Однако мы можем отметить по крайней мере две причины того, почему наука кажется столь убедительной иллюстрацией к общему правилу, что истина и ложь обнаруживаются определённо и недвусмысленно тогда, когда утверждения сопоставляются с фактом. Нормальная наука может и должна беспрестанно стремиться к приведению теории и факта в полное соответствие, а такая деятельность легко может рассматриваться как проверка или как поиски подтверждения или опровержения. Вместо этого её целью является решение головоломки, для самого существования которой должна быть допущена обоснованность парадигмы. Если оказывается, что достигнуть решения невозможно, то это дискредитирует только учёного, но не теорию. Здесь ещё более справедлива упомянутая ранее пословица: «Плох тот плотник, который в своих неудачах винит инструменты». К тому же способ, каким в процессе обучения запутывается вопрос о сущности теории путём отсылок к её применениям, помогает усилить теорию подтверждаемости, полученную в своё время совсем из других источников. Человек, читающий учебник, может, не имея к тому ни малейших оснований, легко принять применения теории за её доказательство, за основание, в силу которого ей следует доверять. Но изучающие науку принимают теорию вследствие авторитета учителя или учебника, а не вследствие её доказательства. Какие альтернативы или возможности у них имеются? Приложения науки, приводимые в учебниках, привлекаются не для доказательства, а потому, что их изучение составляет часть изучения парадигмы на основе постоянной практики. Если бы приложения предлагались в качестве доказательства, тогда неудача учебников предложить альтернативные интерпретации или обсудить проблемы, для которых учёным не удаётся создать парадигмальные решения, должна объясняться крайними предубеждениями авторов учебников.
Однако в действительности нет ни малейшего основания для такого обвинения.
Тогда каким образом, если вернуться к первоначальному вопросу, реагируют учёные на осознание аномалии в соответствии между теорией и природой? То, о чём только что говорилось, указывает на тот факт, что даже неизмеримо бóльшие расхождения, чем те, которые обнаруживались в других приложениях теории, не требуют какого-либо глубокого изменения парадигмы. Какие-то расхождения есть всегда. Даже наиболее неподатливые расхождения в конце концов приводятся обычно в соответствие с нормальной практикой научного исследования. Очень часто учёные предпочитают подождать, особенно если есть в других разделах данной области исследования много проблем, доступных для решения. Мы уже отметили, например, что в течение 60 лет после исходных расчётов Ньютона предсказываемые сдвиги в перигее Луны составляли по величине только половину от наблюдаемых. По мере того как превосходные специалисты по математической физике в Европе продолжали безуспешно бороться с хорошо известным расхождением, иногда выдвигались предложения модифицировать ньютоновский закон обратной зависимости от квадрата расстояния. Но ни одно из этих предложений не принималось всерьёз, и на практике упорство по отношению к этой значительной аномалии оказалось оправданным. Клеро в 1750 году смог показать, что ошибочным был только математический аппарат приложений, а сама теория Ньютона могла быть оставлена в прежнем виде [85] . Даже в случаях, где не может быть ни одной явной ошибки (вероятно, потому, что использование математического аппарата является более простым, привычным и везде оправдывающим себя приёмом), устойчивая и осознанная аномалия не всегда порождает кризис. Никто всерьёз не подвергал сомнению теорию Ньютона, хотя было давно известно расхождение между предсказаниями, выведенными из этой теории, и наблюдениями над скоростью звука и над движением Меркурия. Первое расхождение было в конечном счёте (и совершенно неожиданно) разрешено экспериментами, относящимися к теории теплоты, предпринятыми совсем для другой цели; второе — исчезло с возникновением общей теории относительности после кризиса, в возникновении которого оно не сыграло никакой роли [86] . По-видимому, ни первое, ни второе расхождение не оказались достаточно фундаментальными, чтобы вызвать затруднение, которое вело бы к кризису. Они могли быть признаны в качестве контрпримеров и оставлены пока в стороне для последующей разработки.
85
W. Whewell. History of the Inductive Sciences, London, 1847, II, p. 220—221.
86
По вопросу о скорости звука см.: Т.S.Kuhn. The Caloric Theory of Adiabatic Compression. — «Isis», XLIV, 1958, p. 136—137. По вопросу о вековом изменении в перигелии Меркурия см.: E.T.Whittaker. A History of the Theories of Aether and Electricity, II. London, 1953, p. 151, 179.
Следовательно, если аномалия должна вызывать кризис, то она, как правило, должна означать нечто большее, чем просто аномалию. Всегда есть какие-нибудь трудности в установлении соответствия парадигмы с природой; большинство из них рано или поздно устраняется, часто благодаря процессам, которые невозможно было предвидеть. Учёный, который прерывает свою работу для анализа каждой замеченной им аномалии, редко добивается значительных успехов. Поэтому мы должны спросить, чту именно в возникшей аномалии делает её заслуживающей сосредоточенного исследования, и на этот вопрос, вероятно, нет достаточно общего ответа. Случаи, которые мы уже рассмотрели, характерны, но едва ли поучительны. Иногда аномалия будет явно подвергать сомнению эксплицитные и фундаментальные обобщения парадигмы, как в случае с проблемой эфирного сопротивления для тех, кто принял теорию Максвелла. Или, как в случае коперниканской революции, аномалия без видимого основательного повода может вызывать кризис, если приложения, которым она препятствует, обладают особенной практической значимостью, как это было при создании календаря вопреки положениям астрологии. Или, как это случилось с химией XVIII века, развитие нормальной науки может превратить аномалию, которая сначала была только досадной неприятностью, в источник кризиса: проблема весовых отношений имела совершенно иной статус после развития методов пневматической химии. По-видимому, есть ещё и другие обстоятельства, которые могут делать аномалию особенно активной, когда обычно несколько обстоятельств комбинируются. Например, мы уже отмечали, что одним из источников кризиса, с которым столкнулся Коперник, была просто продолжительность периода, в течение которого астрономы безуспешно боролись за уменьшение оставшихся непреодоленными расхождений в системе Птолемея.
Когда в силу этих оснований или других, подобных им, аномалия оказывается чем-то бóльшим, нежели просто ещё одной головоломкой нормальной науки,
Когда ситуация становится острой, она так или иначе осознаётся причастными к ней учёными. Коперник жаловался на то, что современные ему астрономы были так «непоследовательны в своих [астрономических] исследованиях… что не могли даже объяснить или наблюдать постоянную продолжительность годового периода». «С ними, — писал далее Коперник, — происходит нечто подобное тому, когда скульптор собирает руки, ноги, голову и другие элементы для своей скульптуры из различных моделей; каждая часть превосходно вылеплена, но не относится к одному и тому же телу, и потому они не могут быть согласованы между собой, в результате получится скорее чудовище, чем человек» [87] . Эйнштейн, живший в эпоху, для которой был характерен менее красочный язык, выразился так: «Ощущение было такое, как если бы из-под ног ушла земля, и нигде не было видно твёрдой почвы, на которой можно было бы строить» [88] . А Вольфганг Паули за месяц до статьи Гейзенберга о матричной механике, указавшей путь к новой квантовой теории, писал своему другу: «В данный момент физика снова ужасно запутана. Во всяком случае она слишком трудна для меня; я предпочёл бы писать сценарии для кинокомедий или что-нибудь в этом роде и никогда не слышать о физике». Этот протест необычайно выразителен, если сравнить его со словами Паули, сказанными менее пяти месяцев спустя: «Гейзенберговский тип механики снова вселяет в меня надежду и радость жизни. Безусловно, он не предлагает полного решения загадки, но я уверен, что снова можно продвигаться вперёд» [89] .
87
См.: Т. S. Kuhn. The Copernican Revolution. Cambridge, Mass., 1957, p. 138.
88
A. Einstein. Autobiographical Note, in: «Albert Einstein: Philosopher-Scientist», ed. P. A. Schilpp, Evanston, Ill., 1949, p. 45.
89
R. Kronig. The Turning Point, in: «Theoretical Physics in the Twentieth Century: A Memorial Volume to Wolfgang Pauli», ed. M. Fierz and V. F. Weisskopf. N. Y., 1960, p. 25, 25—26. Многие из этих статей описывают кризис в квантовой механике в период, непосредственно предшествующий 1925 году.
Такие откровенные признания перелома в науке необычайно редки, но последствия кризиса не зависят полностью от его сознательного восприятия. Что мы можем сказать об этих последствиях? Из них только два представляются нам универсальными. Любой кризис начинается с сомнения в парадигме и последующего расшатывания правил нормального исследования. В этом отношении исследование во время кризиса имеет очень много сходного с исследованием в допарадигмальный период, за исключением того, что в первом случае затруднительных проблем несколько меньше и они более точно определены. Все кризисы заканчиваются одним из трёх возможных исходов. Иногда нормальная наука в конце концов доказывает свою способность разрешить проблему, порождающую кризис, несмотря на отчаяние тех, кто рассматривал её как конец существующей парадигмы. В других случаях не исправляют положения даже явно радикально новые подходы. Тогда учёные могут прийти к заключению, что при сложившемся в их области исследования положении вещей решения проблемы не предвидится. Проблема снабжается соответствующим ярлыком и оставляется в стороне в наследство будущему поколению в надежде на её решение с помощью более совершенных методов. Наконец, возможен случай, который будет нас особенно интересовать, когда кризис разрешается с возникновением нового претендента на место парадигмы и последующей борьбой за его принятие. Этот последний способ завершения кризиса рассматривается подробно в последующих разделах, но мы должны предвосхитить часть из того, о чём мы будем говорить в дальнейшем, с тем, чтобы подвести итог этим замечаниям об эволюции и анатомии кризисной ситуации.
Переход от парадигмы в кризисный период к новой парадигме, от которой может родиться новая традиция нормальной науки, представляет собой процесс далеко не кумулятивный и не такой, который мог бы быть осуществлён посредством более чёткой разработки или расширения старой парадигмы. Этот процесс скорее напоминает реконструкцию области на новых основаниях, реконструкцию, которая изменяет некоторые наиболее элементарные теоретические обобщения в данной области, а также многие методы и приложения парадигмы. В течение переходного периода наблюдается большое, но никогда не полное совпадение проблем, которые могут быть решены и с помощью старой парадигмы, и с помощью новой. Однако тем не менее имеется разительное отличие в способах решения. К тому времени, когда переход заканчивается, учёный-профессионал уже изменит свою точку зрения на область исследования, её методы и цели. Один наблюдательный историк, рассмотревший классический случай переориентировки вследствие изменения парадигмы, недавно писал, что для этого нужно «дотянуться до другого конца палки», поскольку это процесс, который включает «трактовку того же самого набора данных, который был и раньше, но теперь их нужно разместить в новой системе связей друг с другом, изменяя всю схему» [90] . Другие историки, которые отмечали этот момент научного развития, подчёркивали его сходство с изменением целостного зрительного образа — гештальта: «Штрихи на бумаге, которые, как казалось раньше, изображают птицу, увиденные во второй раз, напоминают антилопу, или наоборот» [91] . Однако эта аналогия может быть обманчивой. Учёные не видят нечто как что-то иное, напротив, они просто видят это нечто. Мы уже касались некоторых проблем, возникших из утверждения, что Пристли рассматривал кислород как дефлогистированный воздух. Кроме того, учёный не обладает свободой «переключать» по своей воле зрительный образ между различными способами восприятия. Тем не менее смена образа — особенно потому, что сегодня она так хорошо знакома, — представляет собой полезный элементарный прототип того, что происходит при крупном изменении парадигмы.
90
Н. Butterfield. The Origins of Modern Science, 1300—1800. London, 1949. p 1—7.
91
Hanson. Op. cit., chap. I.
Высказанные ранее предварительные соображения могут помочь нам осознать кризис как соответствующую прелюдию к возникновению новых теорий, особенно после того, как мы уже рассмотрели в малом масштабе тот же самый кризис при обсуждении открытий. Возникновение новой теории порывает с одной традицией научной практики и вводит новую, осуществляемую посредством других правил и в другой области рассуждения. Вероятно, это происходит только тогда, когда первая традиция окончательно заводит в тупик Однако это замечание не более чем прелюдия к изучению ситуации кризиса, и, к сожалению, вопросы, к которым она приводит, относятся скорее к компетенции психологов, нежели историков. Что представляет собой экстраординарное исследование? Как аномалия становится правомерной? Как поступают учёные, когда осознают, что их теории в основе своей ошибочны на том уровне, на котором им ничем не может помочь полученное ими образование? Эти вопросы нужно изучить более глубоко, и здесь найдётся работа не только для историка. Те рассуждения, которые последуют далее, по необходимости будут скорее пробными и менее полными, чем это было ранее.