Свет невидимого
Шрифт:
Доказательство вручим в руки самого беспристрастного из судей — расчета. Атомная масса водорода 1,008. Следовательно, если уравнение, написанное выше, верно, то атомная масса должна быть вчетверо больше атомной массы водорода, а именно: 1,008 × 4 = 4,032. Смотрим в таблицу атомных масс: почти верно. Но только — почти. Атомная масса гелия равна 4,003. Разница 0,029. Иными словами, это означает, что из 4,032 граммов водорода получается не такое же количество гелия, а приблизительно на три сотых грамма меньше.
Подумаешь, три сотых грамма! Велика ли величина? Велика! Чудовищно громадна! Потому что благодаря этим трем сотым грамма при взаимодействии каждых 4 граммов водорода с образованием гелия
Не пытайтесь представить себе эту величину. Бесполезная затея. Здесь может помочь лишь сравнение. Этим количеством тепла можно нагреть до кипения 10 тысяч тонн воды. Впрочем, того, кто знает суть одного из самых важных уравнений современного естествознания — уравнения Эйнштейна, связывающего величину массы с эквивалентным ей количеством энергии, этим числом не удивишь.
Когда же обращаешься к тому, что происходит на Солнце, то удивления и восхищения не сдержит даже умудренный знаниями и годами седобородый профессор.
Пока вы читали эту фразу об убеленном сединами профессоре, наше светило потеряло в массе примерно 10 миллионов тонн. Может быть, и больше, но никак не меньше.
Ежесекундно на Солнце 570 миллионов тонн водорода превращается в 566 миллионов тонн гелия. Каждую секунду Солнце теряет примерно 4 миллиона тонн массы, уносящейся в виде световой и тепловой энергии. Если подсчитать, какому количеству тепла отвечает эта масса, получается число, с которым в физике и даже астрономии не каждый день приходится встречаться: 4·1025 килоджоулей. Постигнуть грандиозность этого числа не поможет и самое броское сравнение. Впрочем, читатель, июльским полднем изнывающий под немилосердно палящими лучами Солнца и с ужасом думающий, что на планете имеются места, где жара куда более суровая, вспомни, что на Землю падает всего одна двухмиллиардная доля солнечной радиации.
Рассуждения об источнике солнечной энергии привели нас в дебри ядерной физики. Хотя какие это дебри? Сегодня — это уже вдоль и поперек исхоженный перекресток, вроде Столешникова переулка в Москве. Нынче в физике есть разделы, которые действительно следовало бы назвать джунглями. Хотя физики-теоретики неплохо в этих зарослях ориентируются.
Солнечную реакцию научились осуществлять на Земле. Правда, поначалу процесс слияния ядер атомов водорода нашел достаточно мрачное применение: именно процесс слияния ядер водорода осуществляется в термоядерных бомбах, названных поэтому водородными, в бомбах, о чудовищной разрушительной и губящей силе которых написано столько, что вспоминать об этом без особой нужды не хочется.
Нельзя не подивиться тому факту, что водородная реакция — второе в истории науки явление, какое вначале было обнаружено на Солнце, а потом уже осуществлено на Земле. Первым было нашумевшее в свое время открытие «солнечного газа» — гелия.
Для нас здесь важно другое — тот факт, что в результате слияния ядер водорода образуется более «крупный» элемент гелий. Более крупный…
А ведь при радиоактивном распаде происходит уменьшение атомной массы и порядкового номера; а если при бета-распаде порядковый номер и увеличивается (при неизменной массе), то всего на единицу. Здесь же, при термоядерном синтезе, увеличиваются и порядковый номер и атомная масса. Причем, как мы увидим далее, увеличиваются весьма значительно. Так сказать, радиоактивность в зеркальном отображении.
Вам предстоит пройти тяжелый и сложный путь в 100 километров длиной. А вы прошли только один километр. Можно ли сказать, что путешествие закончено? Нет, конечно. Еще
Вот так и здесь, в проблеме происхождения элементов. Выяснено, как образуется гелий. Один элемент из сотни. Мало. Очень мало.
Но не зря говорят: хорошее начало — половина успеха. А начало — выяснение роли водородно-ядерной реакции — и впрямь как будто бы неплохое.
Науке точно известны условия, при которых в звездах происходит слияние ядер водорода с образованием ядер гелия. Условия эти выражаются тремя словами: 20 миллионов градусов. Кратко, но… очень сложно.
Сложно потому, что извилистым и подчас изнурительным путем пришли ученые к выяснению этой величины.
Сложно потому, что нелегко было доказать и исчезновение водорода, и образование гелия.
Сложно потому, что 20 миллионов градусов — это все-таки громадная, чудовищная температура. И надо было обладать незаурядной по тому времени научной смелостью, чтобы предположить возможность существования таких температур, и добротной научной эрудицией, чтобы доказать справедливость этих предположений.
20 миллионов градусов! Много? Очень много. Тем не менее очень скоро мы поведем речь о таких температурах, по отношению к которым 20 миллионов градусов — то же, что студеная вода горного потока в сравнении с кипящим маслом.
Итак, выгорает на звезде водород. Он не горит, конечно, в прямом смысле этого слова. Горение — процесс соединения элементов с кислородом. Вот почему «выгорает» — сказано здесь не совсем точно, но, по-видимому, достаточно образно. В звезде образуется гелиевое ядро. При этом гелий оказывается сильно сжатым по сравнению с исходным водородом. Оболочка звезды — небольшое количество оставшегося водорода — напротив, сильно расширяется.
Что же при этом происходит? А то же, что в нашем домашнем холодильнике. Расширение фреона в испарительной камере сопровождается охлаждением газа, ожижение фреона приводит к выделению тепла, к разогреванию.
Таких «холодильников» во Вселенной столько, «сколько звезд на небе». Вероятно, эта поговорка никогда не была так к месту. Потому что здесь ее следует понимать буквально. Каждая звезда — «холодильник» с «холодильной камерой» — оболочкой и «поршневой камерой» — ядром.
Вот почему в гелиевом ядре температура сильно повышается, а водородная оболочка звезды значительно остывает. Это слово надо понимать, конечно, относительно. Водородная оболочка имеет температуру 3000–4000 градусов; при такой температуре не озябнешь!
Тут, разумеется, возникает вопрос: как об этом узнали? Как раз это оказалось сравнительно несложным. Обратили внимание на то, что те звезды, в которых мало водорода, но много гелия, имеют на поверхности более низкую температуру. Определять температуру звезд, хотя и не очень простая, но, в общем, вполне посильная задача: чем белее звезда, тем она жарче разогрета, чем краснее, тем она холоднее. (Вспомните: «Нагреть до белого каления».)
В гелиевом ядре таких звезд возникают условия, которые по нашим, земным, меркам и представить трудно: температура 100–150 миллионов градусов. (Лишнее подтверждение справедливости французской пословицы: «Всякое сравнение хромает». Вспомните сравнение, которое я приводил несколькими строками ранее; как видим, «масло» нагрето сильнее «воды» на сотню с лишним миллионов градусов…) Плотность вещества, образующего гелиевые звезды — несколько центнеров на кубический сантиметр. Плотность хорошая — такая, что одна щепоть этого звездного вещества потянула бы столько, сколько хорошо груженный КамАЗ.