Чтение онлайн

на главную

Жанры

Таблица Менделеева. Элементы уже близко
Шрифт:

Невольным первооткрывателем водорода можно считать Парацельса – швейцарского алхимика шестнадцатого века, также известного как Филипп Ауреол Теофраст Бомбаст фон Гогенхайм. Парацельс заметил, что при растворении большинства металлов в кислотах выделяются пузырьки воспламеняемого «воздуха», причем чаще всего свойства этих пузырьков не зависели ни от природы металла, ни от взятой для его растворения кислоты. Чуть позже, независимо от Парацельса, выделение горючих пузырьков наблюдал английский химик Роберт Бойль, вполне возможно, что это могли наблюдать и другие алхимики.

Тем

не менее официальным первооткрывателем водорода, человеком, который предположил, что водород является индивидуальным веществом, был Генри Кавендиш. С 1760 по 1780 год Кавендиш выделил водород, назвал его «негорючим воздухом» и обнаружил, что при горении в «дефлогистированном воздухе» (сейчас мы называем его кислородом) образуется вода. Современное название – водород – было предложено Антуаном Лораном Лавуазье.

Высокая горючесть молекулярного водорода и то, что это самый легкий из газов, не дает возможности водороду накапливаться в атмосфере Земли в виде простого вещества – сейчас он, если и появляется в атмосфере, то тут же окисляется кислородом воздуха. Ранее, когда атмосфера Земли еще не была окисляющей, до «большого кислородного события», в ходе которого кислород появился в земной атмосфере и стал вторым газом по содержанию, в четырнадцать раз более легким, чем азот, и в двадцать два раза более легким, чем углекислый газ, водород просто поднимался в верхние слои атмосферы и улетучивался в космическое пространство (сейчас по такой же схеме наша атмосфера теряет гелий, образующийся в земной коре во время процессов распада радиоактивных элементов). Небольшая плотность молекулярного водорода привела к тому, что прежде всего он начал применяться в воздухоплавании. Первый заполненный водородом воздушный шар был построен в 1783 году французским ученым Жаком Александром Сезаром Шарлем, вскоре после первого полета братьев Монгольфьер. Шарль справедливо рассудил, что замена горячего воздуха на более легкий газ увеличит подъёмную силу шара, и создал свое «воздухоплавательное судно» – заполнил водородом оболочку шара из шёлка, для увеличения герметичности пропитанного природным каучуком (с тех пор воздушный шар, наполняемый водородом или другим газом легче воздуха, стали называть «шарльер»).

Казалось, благодаря водороду воздухоплавание и летательные аппараты легче воздуха ждет большое будущее. Особые надежды на такие аппараты стали возлагаться с заменой мягких оболочек воздушных шаров на оболочки, усиленные внутренними каркасами. Изобретателем и энтузиастом создания воздухоплавательного парка из таких машин был немецкий граф Фердинанд фон Цеппелин, в честь которого такие воздушные суда стали называть цеппелинами (нам они известны как дирижабли). Золотой век дирижаблей пришелся на 1920–1930-е годы, когда они использовались и для перевозки грузов, и людей, в том числе и через Атлантический океан. Тем не менее водород обеспечил не только расцвет эры управляемых шарльеров, но и их закат – главной проблемой водорода является его реакционная способность и высокая горючесть. Из-за того, что наполнявший оболочки воздушных шаров водород загорался, часто случались аварии, а после 6 мая 1937 года, когда возгорание цеппелина «Гинденбург», унесшее жизни 36 человек, было заснято на киноплёнку (справедливости ради, были аварии дирижаблей и с бо`льшим количеством жертв, но они не попадали в кинохронику), люди всерьез задумались о безопасности перемещения по воздуху на шаре, наполненном водородом. К счастью, дальнейший прогресс авиации позволил безболезненно прекратить использование дирижаблей. Тем не менее водород и сейчас не теряет своего значения для средств передвижения. Правда, в наши дни водород привлекает инженеров уже не из-за небольшой плотности, а из-за того, что он сгорает с выделением большого количества энергии. В двигателях многих ракет НАСА топливом является сжиженный водород, который сгорает в чистом кислороде.

Ещё одна тенденция нашего времени – попытка рассматривать водород как альтернативу другим видам топлива, в первую очередь получаемым с помощью переработки нефти. Конечно, с точки зрения экологии водород выглядит более привлекательным, чем бензин или дизельное топливо, хотя бы потому, что он сгорает только с образованием воды, не давая парниковых газов. Однако с точки зрения инженера или логиста переход на водородное топливо не так прост. Наиболее вероятный способ использовать водород – не сжигать его (это может привести к взрыву), а применять как топливо для электрохимической реакции, в результате которой выделяющийся электрический ток и будет приводить в действие двигатель автомобиля. Несмотря на то, что уже сообщается о создании работающих прототипов водородных автомобилей, есть сомнения в том, что в будущем их производство станет массовым. Во-первых, для обеспечения работы таких машин потребуется сеть «водородных заправок», а со времен аварии «Гинденбурга» водород не стал ни менее взрывчатым, ни менее огнеопасным. Еще одна проблема в том, что из литра бензина можно получить в три раза больше полезной энергии, чем из литра сжиженного водорода, и, очевидно, понятно, что для сжижения легкого газообразного водорода энергию нужно потратить. Нельзя не упомянуть и то, что в настоящее время у нас нет и достаточно эффективных способов получения водорода – его получают либо из углеводородов (попутно при этом образуются парниковые газы), либо электролизом воды, а электричество для процесса тоже может быть получено с помощью «грязных технологий».

Но, даже если в будущем нас не ждёт эра водородных автомобилей, водород может стать топливом для более энергоёмкого процесса – управляемого термоядерного синтеза. Скорее всего, разработки промышленных термоядерных реакторов для получения электроэнергии придётся ждать еще десятилетия, но термоядерные процессы – процессы слияния атомов водорода в гелий, точно такие же, которые протекают в звезде по имени Солнце и в других звездах, с именами и без, – позволят добиться получения наиболее чистой и безотходной электроэнергии. И, какое бы применение мы уже ни нашли водороду и какое применение мы еще найдем для него, он навсегда останется элементом №1, тем элементом, с которого начинается и Периодическая система, и началась Вселенная.

2. Гелий

С гелием, по крайней мере с шариками, наполненными гелием, знакомы практически все. Правда, всякий раз, когда я вижу, как на мероприятиях или праздниках пускают в небо шары, надутые гелием, я чувствую себя слегка опечаленным. Это происходит не из-за того, что я не люблю веселиться (веселиться я даже очень люблю), и даже не из-за того, что меня волнует судьба оболочки шара. Когда-нибудь гелий «сдуется», оболочка упадёт и пополнит и без того немалое количество полимерного мусора, накапливающегося в окружающей среде (хотя людям, запускающим шарики в небеса, стоило бы задумываться и об этом).

Когда я вижу летящие шарики, надутые гелием, меня, как химика, заботит то, что с ними мы практически навсегда теряем ценный ресурс – гелий. Вероятно, корни чувств, которые я испытываю при этом, лежат в прошлом – в 1992–1995 годах в аспирантуре я с помощью газожидкостной хроматографии изучал кинетику реакций, газом-носителем для хроматографа был гелий. Когда баллоны с гелием заканчивались, работа прекращалась на длительный срок до появления средств на новую порцию гелия – с тех пор я привык бережно относиться к этому инертному газу.

Гелий – второй по распространенности элемент во Вселенной, но здесь, на Земле, он редкий гость. Многие предполагают, что гелий получают переработкой воздуха, но на самом деле этот инертный газ добывают из пробуренных в земле скважин. Гелий в следовых количествах входит в состав природного газа, в некоторых месторождениях его больше, в некоторых меньше, но в любом случае гелий добывают из природного газа с помощью низкотемпературной фракционной перегонки (разделения при низкой температуре). Возникает вопрос – как же гелий мог оказаться под землей и смешаться с природным газом? Ответ в том, что в отличие практически от всех остальных химических элементов Периодической системы, которые мы можем найти в земной коре, гелий на Земле появился много позже образования нашей планеты.

Гелий образуется в ходе естественного радиоактивного распада таких элементов, как уран и торий. Эти тяжёлые элементы образовались до формирования земной коры, их ядра нестабильны и очень медленно распадаются. Оба изотопа урана – уран-235 и уран-238 – подвергаются ?-распаду – при самопроизвольном разрушении их ядер выделяется ?-частица, которая представляет не что иное, как ядро атома гелия. Сам атом гелия рождается после того, как ядро захватывает электроны.

Поделиться:
Популярные книги

Мастер 6

Чащин Валерий
6. Мастер
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Мастер 6

Отборная бабушка

Мягкова Нинель
Фантастика:
фэнтези
юмористическая фантастика
7.74
рейтинг книги
Отборная бабушка

Наследник старого рода

Шелег Дмитрий Витальевич
1. Живой лёд
Фантастика:
фэнтези
8.19
рейтинг книги
Наследник старого рода

Дядя самых честных правил 6

«Котобус» Горбов Александр
6. Дядя самых честных правил
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Дядя самых честных правил 6

Болотник 2

Панченко Андрей Алексеевич
2. Болотник
Фантастика:
попаданцы
альтернативная история
6.25
рейтинг книги
Болотник 2

Мымра!

Фад Диана
1. Мымрики
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Мымра!

Законы Рода. Том 6

Flow Ascold
6. Граф Берестьев
Фантастика:
юмористическое фэнтези
аниме
5.00
рейтинг книги
Законы Рода. Том 6

Мимик нового Мира 10

Северный Лис
9. Мимик!
Фантастика:
юмористическое фэнтези
альтернативная история
постапокалипсис
рпг
5.00
рейтинг книги
Мимик нового Мира 10

Наследник и новый Новосиб

Тарс Элиан
7. Десять Принцев Российской Империи
Фантастика:
городское фэнтези
попаданцы
аниме
5.00
рейтинг книги
Наследник и новый Новосиб

Законы Рода. Том 5

Flow Ascold
5. Граф Берестьев
Фантастика:
юмористическое фэнтези
аниме
5.00
рейтинг книги
Законы Рода. Том 5

Его темная целительница

Крааш Кира
2. Любовь среди туманов
Фантастика:
фэнтези
5.75
рейтинг книги
Его темная целительница

Совок 2

Агарев Вадим
2. Совок
Фантастика:
альтернативная история
7.61
рейтинг книги
Совок 2

Жестокая свадьба

Тоцка Тала
Любовные романы:
современные любовные романы
4.87
рейтинг книги
Жестокая свадьба

Кодекс Крови. Книга II

Борзых М.
2. РОС: Кодекс Крови
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Крови. Книга II