Танец жизни. Новая наука о том, как клетка становится человеком
Шрифт:
Пока я пишу эти строки, мы все еще живем в Ньюнхэме, и сегодня мой Саймон празднует двенадцатый день рождения. Он чудесный ребенок, и я очень счастлива, что он есть в моей жизни. Он добавил в нее юмор и веселье, свое искусство и, самое главное, всепоглощающий энтузиазм. Он обогатил мою личность во многих отношениях.
Разумеется, я по-прежнему не могу воссоздать все, что происходило внутри меня в течение долгих месяцев до его рождения, но я думаю, что насторожившие меня результаты теста CVS могли быть обусловлены двумя причинами.
Вероятнее всего, тест обнаружил те клетки с хромосомными аномалиями, которые имелись исключительно в плаценте и не затронули Саймона.
В тот счастливый год, когда родился Саймон, наша научная деятельность повернула в новом направлении. Мы опирались на те навыки, которые моя команда оттачивала годами, маркируя, отслеживая и собирая вместе индивидуальные клетки для создания нового вида живого существа: вместо яйцеклеток и сперматозоидов мы использовали разные типы стволовых клеток, чтобы сделать в лабораторных условиях эмбрионоподобную структуру.
Глава 9
Как синтезировать эмбрион
Простой девиз, начертанный на доске в аудитории Калифорнийского технологического института Ричардом Фейнманом, был сфотографирован для будущих поколений. Девиз гласит: «Чего я не могу создать, того я не понимаю».
Эту фразу подхватили биологи, чтобы объяснить, почему для понимания механизмов жизни используется инженерный подход, особенно в синтетической биологии. Если вы можете воспроизвести чудеса природы в лабораторных условиях, тогда вы действительно понимаете, каким образом ей удается провернуть тот или иной трюк. В настоящее время наука перешла от редукционистского молекулярного взгляда к холистическому восприятию всего живого существа [1].
Для нас послание Фейнмана стало актуальным, когда после мозаичных эмбрионов мы решили предпринять следующий логический шаг и создать эмбрионоподобные структуры из стволовых клеток — материнских или базовых клеток, способных дифференцироваться во все типы клеток, составляющие организм.
Эмбриональные стволовые (ЭС) клетки, которые мой бывший наставник Мартин Эванс изолировал из раннего эмбриона, обладают поистине волшебными свойствами: они могут порождать все типы клеток и создавать любую ткань, но сами по себе не способны вырасти в эмбрион. Нам было интересно узнать причину этого и выяснить, что нужно, чтобы построить эмбрион in vitro, не используя тотипотентную оплодотворенную яйцеклетку.
Клетки, создающие организм и дающие начало ЭС-клеткам, окружены двумя другими типами клеток, которые предоставляют необходимую для выращивания эмбриона информацию, хотя не принимают в этом непосредственного участия: мультипотентные экстра-эмбриональные трофобластные стволовые (ТС) клетки и экстраэмбриональные энтодермные (XEN) стволовые клетки. Следующий вопрос казался очевидным: возможен ли союз этих трех клеточных типов, чтобы они смогли самоорганизоваться и расти по принципам, открытым Аланом Тьюрингом? Если бы нам удалось совершить этот подвиг и создать в лаборатории «синтетические эмбрионы», быть может, мы бы тогда по-настоящему поняли композицию клеточного танца, согласно которому эмбрион строит самого себя.
Эмбриоидные тела
Мечта о выращивании эмбрионоподобных структур в лабораторных условиях не нова. Можно выделить
Поскольку такие опухоли состоят из клеток различных тканей, предполагалось, что они вырастают не из зрелых, а из недифференцированных мультипотентных клеток, имеющих близкое сходство с эмбриональными. Их стали называть клетками эмбриональных карцином (ЭК) [4].
На данном этапе ключевую роль сыграл Мартин Эванс. После серии экспериментов в 1970-х, в том числе вместе с Ричардом Гарднером, Мартин показал, что дифференциация этих клеток была вовсе не аномальной (как у злокачественных клеток), а похожей на таковую в эмбрионе. Хотя это означало, что можно изолировать клетки из раннего эмбриона и позволить им расти в лабораторных условиях, на совершение этого подвига потребовалось еще пять лет [5]. В 1980 году Мартин объединился с эмбриологом Мэттом Кауфманом и на следующий год представил в Nature доклад об открытии ЭК-подобных клеток, которые способны вызывать тератомы, а также использоваться для создания химер, продуцирующих функциональные зародышевые клетки; сегодня они известны как ЭС-клетки [6]. В том же году Гейл Мартин из Калифорнийского университета в Сан-Франциско умудрился вырастить ЭК-клетки из эмбриона [7].
В своей фундаментальной статье, опубликованной в Nature, Мартин подчеркнул, что ЭС-клетки можно использовать для генной модификации, а в 1986 году сделал вывод, что эти клетки являются эффективным средством для создания генетически измененных, или трансгенных животных. За это открытие он получил Нобелевскую премию 2007 года. Учитывая пластичность этих клеток для построения всех остальных типов клеток или эмбриональных тканей, кроме внеэмбриональных, казалось разумным предположить, что при выращивании ЭС-клеток в культуре можно воспроизвести развитие эмбриона. Не совсем так. ЭС-клетки способны сформировать эмбриоидные тела, но эти тела не выглядят и не развиваются как эмбрион.
Хотя я много знаю об ЭС-клетках (разумеется, от Мартина), я вдохновилась эмбриоидными телами гораздо позже, благодаря случайной встрече. Когда Саймону было около двух месяцев, мы с Дэвидом взяли его и Наташу в Японию на Окинаву, где Дэвид должен был выступать на конференции. По пути нам пришлось заглянуть в Стэнфордский университет, куда меня пригласил прочитать лекцию мой друг Мэтт Скотт, выдающийся профессор биологии развития, генетик и биоинженер. Во время этого визита я познакомилась с Роэлем Нуссе и его коллегой Дерком тен Бергом, которые любезно поделились со мной своим недавним открытием, связанным с эмбриоидными телами, — они знали, что я отслеживаю процесс создания и нарушения симметрии в эмбрионе. Они выяснили, что эмбриоидные тела могут спонтанно нарушать свою симметрию, в результате чего инициируются паттерны и активируются гены, такие как Brachyury, необходимые для создания мезодермы [8].