Чтение онлайн

на главную

Жанры

Танец жизни. Новая наука о том, как клетка становится человеком
Шрифт:

Пока я пишу эти строки, мы все еще живем в Ньюнхэме, и сегодня мой Саймон празднует двенадцатый день рождения. Он чудесный ребенок, и я очень счастлива, что он есть в моей жизни. Он добавил в нее юмор и веселье, свое искусство и, самое главное, всепоглощающий энтузиазм. Он обогатил мою личность во многих отношениях.

Разумеется, я по-прежнему не могу воссоздать все, что происходило внутри меня в течение долгих месяцев до его рождения, но я думаю, что насторожившие меня результаты теста CVS могли быть обусловлены двумя причинами.

Вероятнее всего, тест обнаружил те клетки с хромосомными аномалиями, которые имелись исключительно в плаценте и не затронули Саймона.

Вторую причину подсказывает один из моих экспериментов с мышиными химерами: Саймон мог начинать как мозаичный эмбрион, в основном нормальный, но содержащий несколько аномальных клеток. Проведенное вместе с Хелен исследование показало, что, если эмбрион хотя бы наполовину состоит из нормальных клеток, этого достаточно, чтобы исправить проблему и обеспечить нормальное развитие.

В тот счастливый год, когда родился Саймон, наша научная деятельность повернула в новом направлении. Мы опирались на те навыки, которые моя команда оттачивала годами, маркируя, отслеживая и собирая вместе индивидуальные клетки для создания нового вида живого существа: вместо яйцеклеток и сперматозоидов мы использовали разные типы стволовых клеток, чтобы сделать в лабораторных условиях эмбрионоподобную структуру.

Глава 9

Как синтезировать эмбрион

Простой девиз, начертанный на доске в аудитории Калифорнийского технологического института Ричардом Фейнманом, был сфотографирован для будущих поколений. Девиз гласит: «Чего я не могу создать, того я не понимаю».

Эту фразу подхватили биологи, чтобы объяснить, почему для понимания механизмов жизни используется инженерный подход, особенно в синтетической биологии. Если вы можете воспроизвести чудеса природы в лабораторных условиях, тогда вы действительно понимаете, каким образом ей удается провернуть тот или иной трюк. В настоящее время наука перешла от редукционистского молекулярного взгляда к холистическому восприятию всего живого существа [1].

Для нас послание Фейнмана стало актуальным, когда после мозаичных эмбрионов мы решили предпринять следующий логический шаг и создать эмбрионоподобные структуры из стволовых клеток — материнских или базовых клеток, способных дифференцироваться во все типы клеток, составляющие организм.

Эмбриональные стволовые (ЭС) клетки, которые мой бывший наставник Мартин Эванс изолировал из раннего эмбриона, обладают поистине волшебными свойствами: они могут порождать все типы клеток и создавать любую ткань, но сами по себе не способны вырасти в эмбрион. Нам было интересно узнать причину этого и выяснить, что нужно, чтобы построить эмбрион in vitro, не используя тотипотентную оплодотворенную яйцеклетку.

Клетки, создающие организм и дающие начало ЭС-клеткам, окружены двумя другими типами клеток, которые предоставляют необходимую для выращивания эмбриона информацию, хотя не принимают в этом непосредственного участия: мультипотентные экстра-эмбриональные трофобластные стволовые (ТС) клетки и экстраэмбриональные энтодермные (XEN) стволовые клетки. Следующий вопрос казался очевидным: возможен ли союз этих трех клеточных типов, чтобы они смогли самоорганизоваться и расти по принципам, открытым Аланом Тьюрингом? Если бы нам удалось совершить этот подвиг и создать в лаборатории «синтетические эмбрионы», быть может, мы бы тогда по-настоящему поняли композицию клеточного танца, согласно которому эмбрион строит самого себя.

Эмбриоидные тела

Мечта о выращивании эмбрионоподобных структур в лабораторных условиях не нова. Можно выделить

разные ключевые этапы, но, на мой взгляд, серьезный прорыв в создании живых моделей эмбрионального развития был получен благодаря наблюдениям, сделанным в лаборатории Джексона в Бар-Харборе, штат Мэн, которые предоставили первые сведения о «бодибилдерском» потенциале ЭС-клеток. Там в 1950-х Лерой Стивенс обнаружил линию мышей, страдающих спонтанным образованием тестикулярных тератом (тератокарцином) — опухолей, состоящих из смеси эмбриональных и взрослых тканей [2]. Когда Стивенс и его коллега Дон Варнам пересадили образцы тератом в брюшную полость мышей, у тех сформировались целые агрегаты клеток. Несмотря на то что их рост носил бессистемный характер, Стивенс увидел в них некоторое сходство с мышиными эмбрионами в возрасте нескольких дней [3]. Эти структуры, построенные из ЭС-клеток, были названы эмбриоидными телами.

Поскольку такие опухоли состоят из клеток различных тканей, предполагалось, что они вырастают не из зрелых, а из недифференцированных мультипотентных клеток, имеющих близкое сходство с эмбриональными. Их стали называть клетками эмбриональных карцином (ЭК) [4].

На данном этапе ключевую роль сыграл Мартин Эванс. После серии экспериментов в 1970-х, в том числе вместе с Ричардом Гарднером, Мартин показал, что дифференциация этих клеток была вовсе не аномальной (как у злокачественных клеток), а похожей на таковую в эмбрионе. Хотя это означало, что можно изолировать клетки из раннего эмбриона и позволить им расти в лабораторных условиях, на совершение этого подвига потребовалось еще пять лет [5]. В 1980 году Мартин объединился с эмбриологом Мэттом Кауфманом и на следующий год представил в Nature доклад об открытии ЭК-подобных клеток, которые способны вызывать тератомы, а также использоваться для создания химер, продуцирующих функциональные зародышевые клетки; сегодня они известны как ЭС-клетки [6]. В том же году Гейл Мартин из Калифорнийского университета в Сан-Франциско умудрился вырастить ЭК-клетки из эмбриона [7].

В своей фундаментальной статье, опубликованной в Nature, Мартин подчеркнул, что ЭС-клетки можно использовать для генной модификации, а в 1986 году сделал вывод, что эти клетки являются эффективным средством для создания генетически измененных, или трансгенных животных. За это открытие он получил Нобелевскую премию 2007 года. Учитывая пластичность этих клеток для построения всех остальных типов клеток или эмбриональных тканей, кроме внеэмбриональных, казалось разумным предположить, что при выращивании ЭС-клеток в культуре можно воспроизвести развитие эмбриона. Не совсем так. ЭС-клетки способны сформировать эмбриоидные тела, но эти тела не выглядят и не развиваются как эмбрион.

Хотя я много знаю об ЭС-клетках (разумеется, от Мартина), я вдохновилась эмбриоидными телами гораздо позже, благодаря случайной встрече. Когда Саймону было около двух месяцев, мы с Дэвидом взяли его и Наташу в Японию на Окинаву, где Дэвид должен был выступать на конференции. По пути нам пришлось заглянуть в Стэнфордский университет, куда меня пригласил прочитать лекцию мой друг Мэтт Скотт, выдающийся профессор биологии развития, генетик и биоинженер. Во время этого визита я познакомилась с Роэлем Нуссе и его коллегой Дерком тен Бергом, которые любезно поделились со мной своим недавним открытием, связанным с эмбриоидными телами, — они знали, что я отслеживаю процесс создания и нарушения симметрии в эмбрионе. Они выяснили, что эмбриоидные тела могут спонтанно нарушать свою симметрию, в результате чего инициируются паттерны и активируются гены, такие как Brachyury, необходимые для создания мезодермы [8].

Поделиться:
Популярные книги

Средневековая история. Тетралогия

Гончарова Галина Дмитриевна
Средневековая история
Фантастика:
фэнтези
попаданцы
9.16
рейтинг книги
Средневековая история. Тетралогия

Хозяйка Междуречья

Алеева Елена
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
Хозяйка Междуречья

Назад в СССР 5

Дамиров Рафаэль
5. Курсант
Фантастика:
попаданцы
альтернативная история
6.64
рейтинг книги
Назад в СССР 5

Столичный доктор. Том II

Вязовский Алексей
2. Столичный доктор
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Столичный доктор. Том II

Игрок, забравшийся на вершину. Том 8

Михалек Дмитрий Владимирович
8. Игрок, забравшийся на вершину
Фантастика:
фэнтези
рпг
5.00
рейтинг книги
Игрок, забравшийся на вершину. Том 8

Довлатов. Сонный лекарь

Голд Джон
1. Не вывожу
Фантастика:
альтернативная история
аниме
5.00
рейтинг книги
Довлатов. Сонный лекарь

Идеальный мир для Лекаря 9

Сапфир Олег
9. Лекарь
Фантастика:
боевая фантастика
юмористическое фэнтези
6.00
рейтинг книги
Идеальный мир для Лекаря 9

Система Возвышения. Второй Том. Часть 1

Раздоров Николай
2. Система Возвышения
Фантастика:
фэнтези
7.92
рейтинг книги
Система Возвышения. Второй Том. Часть 1

Чужое наследие

Кораблев Родион
3. Другая сторона
Фантастика:
боевая фантастика
8.47
рейтинг книги
Чужое наследие

Князь Мещерский

Дроздов Анатолий Федорович
3. Зауряд-врач
Фантастика:
альтернативная история
8.35
рейтинг книги
Князь Мещерский

Совок 2

Агарев Вадим
2. Совок
Фантастика:
альтернативная история
7.61
рейтинг книги
Совок 2

Царь поневоле. Том 2

Распопов Дмитрий Викторович
5. Фараон
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Царь поневоле. Том 2

Система Возвышения. (цикл 1-8) - Николай Раздоров

Раздоров Николай
Система Возвышения
Фантастика:
боевая фантастика
4.65
рейтинг книги
Система Возвышения. (цикл 1-8) - Николай Раздоров

Системный Нуб

Тактарин Ринат
1. Ловец душ
Фантастика:
боевая фантастика
рпг
5.00
рейтинг книги
Системный Нуб