Тайна жрецов майа
Шрифт:
Иероглифическое письмо, как и всякое другое, имеет свои количественные показатели, и они полностью совпадают с показателями письма майя. То, что в 1881 году Леон де Рони только предположил, а именно: майя пользовались иероглификой, сходной с иероглификой Старого Света, Юрий Кнорозов научно доказал. То, что раньше было лишь аналогией, теперь стало неоспоримым фактом, подтвержденным точными числами.
Так были сделаны первые шаги по новому пути дешифровки. Он открывал интересные многообещающие перспективы...
Урок математики (по древним майя)
Дешифровка цифровых знаков майя не составила большого труда
Древние майя пользовались двадцатеричной системой счисления, или счета. Почему именно число 20 наряду с единицей стало основой их счета, сейчас невозможно установить с достаточной достоверностью. Но на помощь приходит простая логика. Она подсказывает, что скорее всего сам человек был для древних майя той идеальной математической моделью, которую они и взяли за единицу счета. Действительно, что может быть естественней и проще, коль скоро сама природа "расчленила" эту единицу "счета" на 20 единиц второго порядка по числу пальцев на руках и ногах?
Между прочим, подтверждение именно такому объяснению возникновения двадцатеричной системы счета мы находим в этимологической связи слова "виналь" (так на языке майя назывался двадцатидневный месяц) со словами "двадцать" и "человек". По-видимому, говоря "один человек", древние майя механически представляли себе число 20, если, конечно, в это время речь шла о каких-то количественных единицах.
Известно, что европейцы, как, впрочем, и подавляющее большинство народов мира, пользуются сейчас так называемой арабской цифровой системой, созданной в Индии лишь в конце первой половины прошлого тысячелетия (V век). В соответствии с этой системой - ради справедливости ее следовало бы называть индийской - мы расставляем цифровые знаки горизонтально-строчечным способом, применяя "позиционный принцип" - одно из замечательных достижений человеческого разума. Это значит, что цифры стоят друг за другом в строгом порядке, справа налево от первой позиции или первого порядка к последующим, а именно: единицы, десятки, сотни, тысячи и т. д.
Древние майя также пришли к использованию позиционного принципа. В отличие от нас, европейцев, им не у кого было заимствовать этот принцип, и они сами додумались до него, причем почти на целое тысячелетие (!) раньше Старого Света. Однако запись цифровых знаков, образующих число, они стали вести не горизонтально, а вертикально, снизу вверх, как бы возводя некую этажерку из цифр. Поскольку счет был двадцатеричным, то каждое начальное число следующей верхней позиции, или порядка, было в двадцать раз больше своего соседа с нижней полки "этажерки майя" (если бы майя пользовались десятеричной системой, то число было бы больше не в двадцать, а только в десять раз). На первой полке стояли единицы, на второй - двадцатки и т. д.
Майя записывали свои цифровые знаки в виде точек и тире, причем точка всегда означала единицы данного порядка, а тире - пятерки. Особый знак для пятерки послужил основанием для зачисления системы счета древних майя в так называемую пятерично-двадцатеричную, однако вряд ли можно согласиться с этим, поскольку пятерки-тире лишь упрощали написание цифровых знаков, не внося каких-либо принципиальных изменений в двадцатеричную систему счета. Цифровые знаки древних майя смотрите на 43-й странице.
(см. рис. Tayn1121.gif)
В приведенной таблице не хватает двадцатой цифры. Но это не 20, ибо у майя 20, так же как у нас 10, было уже не цифрой, а составным двузначным числом. Двадцатой цифрой счета древних майя был "нуль", и изображался он в виде стилизованной раковины:
(см. рис. Tayn1122.gif)
В двадцатеричной системе, знающей понятие нуля, первым двузначным числом могло быть только число 20. Так оно и было. Но как изобразить? И майя решают эту задачу необычайно просто:
над раковиной-нулем они рисуют точку, то есть первую цифру своего счета. Новый знак - он изображался так:
(см. рис. Tayn1123.gif)
обозначал первоначальную единицу счета второй позиции или второй полки многозначного числа (многополочной этажерки).
Однако на этом похождения раковины-нуля не кончались. Раковина все же стала появляться и без точки, располагаясь на разных полках цифровой этажерки майя. Это означало, что настоящее число было образовано без участия единиц той полки, на которой в данном случае находилась раковина. Она говорила, что единиц этой полки (на которой она расположилась) попросту нет, как нет, например, десятков, сотен или тысяч в числе, записанном арабскими цифрами, если на отведенном для них месте стоят нули.
Но коль скоро в числе наличествовала хотя бы одна-единственная единица любой из полок, довольно сложный рисунок раковины-нуля сразу же исчезал с нее. Покажем это условно на простейшем примере: (см. рис. Tayn1124.gif), что соответствует числу 21 в нашем представлении.
Действительно, если нижняя точка находится на нижней полке, то это обозначает наличие одной единицы первой позиции, или, попросту говоря, "единицу", но уже не как абстрактный цифровой знак, а как конкретное число. Верхняя же полка указывает на наличие одной единицы второго порядка, каковой является двадцатка в двадцатеричной системе. Следовательно, перед нами двузначное число 21, образованное в полном соответствии со строгими законами позиционного принципа, но только расположенное не горизонтально, как мы привыкли, а вертикально. Проверим свой вывод простейшим арифметическим действием - сложением:
1 "единица" + 1 "двадцатка" = 21.
Чтобы окончательно усвоить урок математики майя, рассмотрим написание нескольких двузначных чисел майя; они наглядно продемонстрируют технику применения ими позиционного принципа, условно названного нами "числовой этажеркой майя" (см. стр. 45).
(см. рис. Tayn1125.gif)
Здесь было бы вполне естественно написать "и так далее", однако это самое "и так далее" как раз и не получается...
В двадцатеричной системе счета древних майя есть исключение: стоит прибавить к числу 359 только одну единицу первого порядка, как это исключение немедленно вступает в силу. Суть его сводится к следующему: 360 является начальным числом третьего порядка (!) и его место уже не на второй, а на третьей полке.