Чтение онлайн

на главную

Жанры

Темная миссия. Секретная история NASA
Шрифт:

Отсылка к «двадцати семи линиям» также вполне ясно отправляет нас к двухмерному изображению двойного тетраэдра, заключенного в «гиперкуб», что является базовой двухмерной формой шестигранника (рис. 2-3).

Рис. 2-3. Фигура из семи и двадцати Рис. 2-4. «Печать Соломона в трех

линий, как определил Максвелл, яв- измерениях» Максвелла — двойной

ляется двухмерным отображением тетраэдр, вписанный в сферу.

трехмерного сдвоенного тетраэдра,

заключенного в гиперкуб.

Тяжелая рука Хевисайда

К несчастью для науки, после смерти Максвелла два других «математических

физика» XIX века, Оливер Хевисайд и Уильям Гиббс, свели его оригинальные уравнения к четырем простым (к сожалению, неполным) выражениям. Хевисайд открыто выражал неприятие кватернионов и так никогда и не понял связи между критически скалярными (не имеющее направления измерение, например, скорость) и направленными (направленная величина, например, перемещение) компонентами, как их употреблял Максвелл для описания потенциальной энергии пустоты («яблоки и апельсины», как он называл их). Поэтому, пытаясь «упростить» оригинальную теорию Максвелла, Хевисайд устранил из нее более двадцати кватернионов.

Однажды журнал «Сайентифик Американ» назвал Оливера Хевисайда человеком, «получившим знания самостоятельно... никогда не обучавшимся в университетах... но при этом обладавшим выдающейся и непостижимой способностью получать математические результаты значительной сложности, не проходя через осознанный процесс доказательства». По другим свидетельствам, в действительности Хевисайд чувствовал, что использование Максвеллом кватернионов и описания с их помощью «потенциала» пространства было «мистическим и должно было быть удалено из теории». Радикально редактируя оригинальный труд Максвелла после его смерти, вычеркивая скалярный компонент кватернионов и удаляя гиперпространственные характеристики векторного компонента, Хевисайд это и сделал35.

Это означает, что четыре оставшихся классических «уравнения Максвелла» в том виде, в котором они появляются в каждом тексте по электричеству и физике как фундамент всей электротехники и электромагнитной теории XIX века никогда не встречались в трудах Максвелла. И все изобретения, от радио до радара, от телевидения до вычислительной техники, все науки, от химии до физики и астрофизики, которые имеют дело с процессами электромагнитного излучения, основаны на этих мнимых «уравнениях Максвелла».

На самом же деле это уравнения не Максвелла, а Хевисайда. Конечным результатом стало то, что физика потеряла свои многообещающие теоретические начала как настоящая «гиперпространствен-ная» наука более ста лет назад, а вместо этого, благодаря Хевисайду, стала заниматься весьма ограниченным подразделом сложнейшей теории электромагнитного поля.

Сильнейший удар сторонники эфирной модели получили в 1887 году, когда опыты Майкельсона-Морли убедительно доказали, что «материального эфира» не существует. Однако «благодаря» Хевисайду из внимания было упущено, что сам Максвелл никогда не верил в материальность эфира — он только делал предположение о гиперпространственном эфире, который мгновенно соединяет все во Вселенной. Главная причина путаницы, окружающей настоящую теорию Максвелла, а не то, во что ее превратил Хевисайд, кроется в математике — системе обозначений, которую, вероятно, лучше всех описал Х.Дж. Джозеф: «Алгебра кватернионов Гамильтона, в отличие от алгебры векторов Хевисайда, является не просто сокращенным способом картезианского анализа, а отельным разделом математики со своими собственными правилами и специальными теоремами. Фактически кватернион — это обобщенное, или гиперкомплексное, число».

В 1897 г. Хатауэй опубликовал работу, в которой эти гиперкомплексные числа конкретно определяются как «числа в четырехмерном пространстве». Таким образом, очевидное игнорирование современными физиками открытия сделанного Максвеллом в XIX веке — математически обоснованной четырехмерной теории, — происходит из-за недостатка знания истинной природы кватернионной алгебры Гамильтона. И за исключением случая, если вам удастся найти оригинал издания «Трактата» Максвелла 1873 года, очень сложно проверить существование «гиперпространственной» системы обозначений Максвелла, поскольку к 1892 году третье издание уже содержало «коррекцию» употребления Максвеллом «скалярных потенциалов». Такая «коррекция» удаляет из всей теории Максвелла понятие ключевого различия между четырехмерным «геометрическим потенциалом» и трехмерным «векторным полем». По этой причине многие современные физики, например, Мицуи Каку, очевидно, просто не понимают, что фактически оригинальные уравнения Максвелла были первой геометрической теорией четырехмерного поля, выраженной в специальных терминах четырехмерного пространства — на языке кватернионов.

Повторное открытие

Одной из трудностей представления «высоких измерений» является то, что люди (а ученые — тоже люди), несомненно, спросят — «ну, и где это?!». Наиболее стойким аргументом против четырехмерной геометрии Римана, Кэли, Тейта и Максвелла является то, что ни одно экспериментальное доказательство «четвертого измерения» не является достаточно убедительным. Одним из самых простых для понимания аспектов «большей размерности» было то, что существо из пространства меньшей размерности (например, плоский обитатель двухмерной страны «Флэтляндии»), вступая в наше третье измерение, должно сразу же исчезать из мира меньшей размерности (и, следовательно, тут же появляться в большей размерности, будучи геометрически искаженным). По возвращении в пространство своей размерности оно просто должно «магически» появиться вновь.

Однако, по мнению ученых, в нашем измерении люди не поворачивают однажды за угол и не проваливаются прямо в четвертое измерение Римана. Даже если такая физика математически выводима и последовательна, для «экспериментаторов» (а вся настоящая наука должна основываться на проверяемых, независимо повторяющихся экспериментах) это представлялось недоступным для проверки опытным путем, физически не доказуемым. Поэтому гиперпространство — как потенциальное решение для унификации основных законов физики — исчезает с горизонтов научной мысли до апреля 1919 года.

В это время Альберт Эйнштейн получает примечательное письмо. Его написал Теодор Калуца, малоизвестный математик из Кенигсбергского университета в Германии. В первых же строках своего письма он предложил удивительное (по крайней мере для Эйнштейна, который не был осведомлен об оригинальных кватернионных уравнениях Максвелла) решение одной из самых трудных проблем физики — унификацию его (Эйнштейна) собственной теории тяготения и теории электромагнитного излучения Максвелла путем введения пятого измерения. (Поскольку Эйнштейн, формулируя общую и частную теории уже после того, как Риман высказал свои идеи, определил время как четвертое измерение, Калуца был вынужден назвать свою дополнительную пространственную размерность пятой. На самом деле это была та же размерность, что использовалась Максвеллом и его коллегами при обозначении четырехмерных пространств более чем за 50 лет до него).

Несмотря на успех математической теории и окончательное объединение тяготения и света, вопрос «Где это?» задавался Калуце точно так же, как и Риману за 60 лет до этого, поскольку убедительного экспериментального доказательства физического существования иного измерения не имелось. У Калуцы нашелся прекрасный ответ: он предположил, что четвертое измерение каким-то образом свернулось в «кольца» очень малых размеров, «меньше, чем самый маленький атом».

В 1926 году другой малоизвестный математик, Оскар Клейн исследовал особенности применения идеи Калуцы в контексте недавно созданной атомной теории квантовой механики. Клейн специализировался на изучении загадочных полей математической топологии — многомерных поверхностей объектов. Идея квантовой механики была выдвинута Максом Планком и многими другими учеными, несогласными с ограничениями теории электромагнитного поля Максвелла, за год до того, как Клейн начал дальнейшее топологическое исследование идей Калуцы. Теория «квантовой механики» была весьма успешной (а с точки зрения «нормального» здравого смысла — странной) попыткой без помощи геометрии описать взаимодействие между «элементарными частицами», при котором через частицы происходит «обмен сил» и энергии в субатомном мире. В итоге, объединяя две теории, Клейн теоретически предсказывал, что, если новое измерение Калуцы действительно существует, оно, вероятно, свернулось до планковской длины — предположительно самого малого размера, который может существовать в этом элементарном взаимодействии. При этом размер этот составляет только около 10 «в минус тридцать третьей степени» сантиметров в поперечнике. Таким образом, главным препятствием для экспериментального подтверждения теории Калуцы-Клейна (и причины того, почему люди не могут просто «войти в четвертое измерение) было то, что расчеты квантовой механики подтвердили: единственный способ измерить такую бесконечно малую величину — произвести измерения при помощи ускорителя ядерных частиц. Имелась только одна маленькая техническая трудность: энергия, которая требовалась для этого, превышала всю суммарную мощность силовых станций Земли.

Поделиться:
Популярные книги

Новый Рал 2

Северный Лис
2. Рал!
Фантастика:
фэнтези
7.62
рейтинг книги
Новый Рал 2

"Фантастика 2024-104". Компиляция. Книги 1-24

Михайлов Дем Алексеевич
Фантастика 2024. Компиляция
Фантастика:
боевая фантастика
5.00
рейтинг книги
Фантастика 2024-104. Компиляция. Книги 1-24

Темный Лекарь 5

Токсик Саша
5. Темный Лекарь
Фантастика:
фэнтези
аниме
5.00
рейтинг книги
Темный Лекарь 5

Кодекс Охотника. Книга XVIII

Винокуров Юрий
18. Кодекс Охотника
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Охотника. Книга XVIII

Возвращение

Кораблев Родион
5. Другая сторона
Фантастика:
боевая фантастика
6.23
рейтинг книги
Возвращение

Наследник

Кулаков Алексей Иванович
1. Рюрикова кровь
Фантастика:
научная фантастика
попаданцы
альтернативная история
8.69
рейтинг книги
Наследник

Везунчик. Дилогия

Бубела Олег Николаевич
Везунчик
Фантастика:
фэнтези
попаданцы
8.63
рейтинг книги
Везунчик. Дилогия

Курсант: Назад в СССР 7

Дамиров Рафаэль
7. Курсант
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Курсант: Назад в СССР 7

Кодекс Охотника. Книга VIII

Винокуров Юрий
8. Кодекс Охотника
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Охотника. Книга VIII

Адепт: Обучение. Каникулы [СИ]

Бубела Олег Николаевич
6. Совсем не герой
Фантастика:
фэнтези
попаданцы
9.15
рейтинг книги
Адепт: Обучение. Каникулы [СИ]

На границе империй. Том 8. Часть 2

INDIGO
13. Фортуна дама переменчивая
Фантастика:
космическая фантастика
попаданцы
5.00
рейтинг книги
На границе империй. Том 8. Часть 2

Вперед в прошлое 3

Ратманов Денис
3. Вперёд в прошлое
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Вперед в прошлое 3

Третий. Том 3

INDIGO
Вселенная EVE Online
Фантастика:
боевая фантастика
космическая фантастика
попаданцы
5.00
рейтинг книги
Третий. Том 3

Сердце Дракона. Том 19. Часть 1

Клеванский Кирилл Сергеевич
19. Сердце дракона
Фантастика:
фэнтези
героическая фантастика
боевая фантастика
7.52
рейтинг книги
Сердце Дракона. Том 19. Часть 1