Тени разума. В поисках науки о сознании
Шрифт:
Итак, остается лишь выяснить, достаточна ли конформационная активность тубулина в отдельной клетке (в парамеции, например, или в клетке человеческой печени) для того, чтобы обусловленное ею перемещение масс удовлетворило бы критерию из §6.12 и процедура ORпроизошла бы именно тогда, когда нужно, или же этой активности недостаточно, и ORзадержится до тех пор, пока окружение и в самом деле не возмутится, — и игра (призом в которой невычислимость) будет проиграна. Судя по первому впечатлению, так оно и есть — конформационная активность тубулина перемещает слишком малое количество вещества, и на требуемом уровне никакой OR– процедуры не происходит. Если же клеток много, ситуация выглядит гораздо более многообещающей.
Возможно, глядя на такую картину (в ее теперешнем виде) действительно не остается ничего другого, как предположить, что невычислительные условия для появления сознания могут возникнуть только в больших совокупностях клеток, что мы и имеем в случае достаточно большого мозга {104} . Однако я порекомендовал
Следует обратить внимание и на некоторые другие вопросы. Например, какая часть мозга действительно задействована в поддержании состояния сознания? Вероятнее всего, весьмозг для этого не требуется. Похоже на то, что многие функции мозга с сознанием никак не связаны. Взять хотя бы мозжечок (см. §1.14 ), который, как это ни поразительно, работает абсолютно бессознательно. Именно мозжечок отвечает за координацию и точность наших действий в тех случаях, когда эти самые действия выполняются без участия сознания (см., например, НРК, с. 379-381). Из-за полной бессознательности его функций мозжечок часто называют «просто компьютером». Было бы, несомненно, весьма поучительно выяснить, есть ли какие-нибудь различия (и если есть, то какие именно) между клеточной или цитоскелетной организациями мозжечка и головного мозга, поскольку именно с последним, по всей видимости, гораздо более тесно связано сознание. Интересно, что если судить лишь по количеству нейронов, то разница между мозгом и мозжечком невелика — в мозге нейронов всего лишь в два раза больше, чем в мозжечке, причем отдельные клетки в мозжечке образуют, в общем случае, значительно больше синаптических связей, чем клетки мозга (см. §1.14 и рис. 1.6 ). Очевидно, простым подсчетом нейронов тут не обойтись, следует искать глубже [59] .
59
Поскольку в нейроанатомии я человек вполне посторонний, меня не мог не поразить факт наличия в организации мозга одной особенности (похоже, так и не нашедшей до сих пор объяснения), которой мозжечок не обладает. Большая часть сенсорных и двигательных нервов «идут наперекрест», т.е. левая сторона мозга отвечает в основном за правую сторону тела, и наоборот. И не только это — та область мозга, что обрабатывает зрительные образы, находится сзади, а та, что заведует ногами, находится вверху; так же обстоит дело и с ушами: сигналы из правого уха обрабатываются слева, а из левого — справа. Нельзя сказать, что эта особенность мозга носит абсолютно универсальный характер, но я не могу отделаться от ощущения, что это не случайно. Потому что мозжечок устроен иначе. Может ли быть так, что сознание каким-то образом выигрывает от того, что нервным сигналам приходится идти «длинной дорогой»?
Возможно, что-либо поучительное удастся извлечь и из изучения процесса «научения», посредством которого движения, первоначально осознаваемые мозгом, переходят под бессознательный мозжечковый контроль. Не исключено, что «обучающие процедуры» мозжечка окажутся очень похожими на те, с помощью которых приверженцы коннекционистской философии обучают искусственные нейронные сети. Впрочем, даже если так оно и есть и даже если верно такжето, что в терминах таких процедур можно объяснить (хотя бы частично) работу мозжечка— что подразумевается, например, в коннекционистском подходе к исследованию зрительной коры {105} — нет никаких оснований полагать, что то же непременно окажется верно и в случае тех аспектов деятельности головного мозга, которые связаны с сознанием. В самом деле, как свидетельствуют представленные в первой части книги доказательства, для объяснения высших когнитивных функций, непосредственно связанных с сознанием, необходимо нечто, в корне отличное от коннекционизма.
8.7. Три мира и три загадки
Попробуем свести все вышесказанное вместе. На протяжении всей книги мы пытаемся найти ответ на главный вопрос: как можно соотнести феномен сознания с нашим научным мировоззрением? Надо признать, я мало что могу сказать о сознании вообще. Поэтому я сосредоточился (в первой части) на одном частном ментальном качестве: способности к сознательному пониманию, в частности, к математическому пониманию. Только на примере этого ментального качества я смог достаточно убедительно показать, что возникновение способности к пониманию в результате какой бы то ни было чисто вычислительной активности решительно невозможно, вычислением нельзя даже адекватно моделировать такую способность — особо следует отметить, что ничто в моих рассуждениях не указывает и на то, что математическоепонимание в чем бы то ни было принципиально отличается от прочих видов понимания. Отсюда вывод: какая бы активность мозга ни отвечала за сознание (по крайней мере, в этом конкретном его проявлении), она должна основываться на физических процессах, описать которые численное моделирование неспособно. Во второй части мы попытались найти область в науке для соответствующего физического процесса, действительно способного вывести нас за пределы чистой вычислительности. Для того чтобы охватить встающие перед нами при этом фундаментальные проблемы, я воспользуюсь
Наиболее близок нам мир наших сознательных восприятий— знание об этом мире мы получаем самым непосредственным образом и о нем же мы знаем меньше всего в смысле точного научного описания. В этом мире есть счастье, боль и цвет. В нем хранятся наши самые ранние детские воспоминания и ждет своего часа страх смерти. В нем — любовь, понимание, знание различных фактов, а также невежество и мстительность. Этот мир содержит образы столов и стульев, здесь запахи, звуки и всевозможные ощущения смешиваются с нашими мыслями и решимостью действовать.
Известны нам и два других мира — не так непосредственно, как мир восприятий, но зато об этих мирах мы знаем довольно много всего. Один из них мы называем физическим миром. В нем находятся настоящие столы и стулья, телевизоры и автомобили, люди, человеческие мозги и импульсы нейронов. В этом мире есть Солнце, Луна и звезды. В нем же — облака, ураганы, скалы, цветы и бабочки, а на более глубоком уровне — молекулы и атомы, электроны и фотоны, время и пространство. Еще там есть цитоскелеты, димеры тубулина и сверхпроводники. Не совсем ясно, почему мир восприятий должен иметь что-то общее с физическим миром, однако, судя по всему, так оно и есть.
Что касается второго мира из упомянутых двух, то само его существование многими ставится под сомнение. Речь идет о платоновском мире математических форм. Здесь обитают натуральные числа 0, 1, 2, 3, … и алгебра комплексных чисел. Здесь мы найдем теорему Лагранжа о том, что любое натуральное число есть сумма четырех квадратов, и самую знаменитую из теорем евклидовой геометрии — теорему Пифагора (о квадратах сторон прямоугольного треугольника). Где-то здесь находится правило ax b= bx aдля любых натуральных чисел и тот факт, что означенное правило не работает в случае «чисел» некоторых других типов (например, тех, что участвуют в грассмановом произведении, упомянутом в §5.15 ). Этот же платоновский мир содержит геометрии, отличные от евклидовой, геометрии, в которых теорема Пифагора неверна. Здесь есть бесконечность и невычислимость, рекурсивные и нерекурсивные ординалы. Здесь — незавершаемое действие машины Тьюринга и машина с оракулом, а также многие классы математических задач, неразрешимые вычислительными методами, такие как задача о замощении плоскости плитками полиомино. В этом мире мы встретим электромагнитные уравнения Максвелла и гравитационные — Эйнштейна, равно как и бесчисленные удовлетворяющие им теоретические пространства-времена, как реалистичные физически, так и совершенно невероятные. Именно здесь пребывают математические модели столов и стульев, которыми можно воспользоваться в «виртуальной реальности», а также модели черных дыр и ураганов.
Имеем ли мы право утверждать, что платоновский мир действительно является «миром» — миром, который «существует» в том же смысле, в каком существуют прочие два мира? Читателю, возможно, покажется, что это вовсе не мир, а просто какой-то пыльный склад для абстрактных концепций, которые понапридумывали математики. Однако существование мира математических идей опирается на фундаментальный, вневременной и универсальный характер этих самых идей и на тот факт, что описываемые ими законы никоим образом не зависят от тех, кто их открыл. Этот «склад» (если это и впрямь склад) построен не нами. Натуральные числа были в этом мире задолго до того, как на Земле появились первые человеческие существа — да и все остальные существа, если уж на то пошло, — и останутся после того, как вся жизнь во Вселенной исчезнет. То, что любое натуральное число есть сумма четырех квадратов, было истиной всегда, а вовсе не стало ею вдруг после того, как Лагранж призвал из небытия соответствующую теорему. Натуральные числа, настолько большие, что оказываются не по зубам любому компьютеру, какой вы можете вообразить, все равно являются суммами четырех квадратов, пусть даже мы никогда и не узнаем, квадратов каких именно чисел. Всегда будет истинным утверждение, что общей вычислительной процедуры для установления факта незавершаемости действия машины Тьюринга не существует, и оно всегда было истинным, задолго до того, как Тьюрингу пришло в голову его определение вычислимости.
Тем не менее, многие возражают, утверждая, что абсолютный характер математической истины никоим образом не является аргументом в пользу реальности «существования» математических концепций и математических истин. (Время от времени я слышу, что математический платонизм якобы устарел. Разумеется, мне известно, что сам Платон умер что-то около 2340 лет назад, однако едва ли это можно считать достаточной причиной! Более серьезную причину могут составить трудности, с которыми порой сталкиваются философы, пытаясь обосновать целиком и полностью абстрактный мир, способный оказывать реальное воздействие на мир физический. Эта фундаментальная проблема, собственно, является частью одной из тех загадок, к которым мы очень скоро перейдем.) На деле же идея реальности математических концепций вполне естественна для математиков, чего нельзя сказать о тех, кто никогда не испытывал радости исследования чудес и тайн того мира. Впрочем, на данном этапе от читателя не требуется соглашаться с тем, что математические концепции действительно образуют «мир», реальность которого сравнима с реальностью физического и ментального миров. Различия во взглядах на природу математических концепций для нас пока существенной роли не играют. Можете, если хотите, рассматривать «платоновский мир математических форм» как риторическую фигуру, введенную для удобства последующих рассуждений. Когда мы доберемся до трех загадок, связывающих эти три «мира», причина именно такого выбора слов, возможно, станет несколько яснее.