Чтение онлайн

на главную - закладки

Жанры

Шрифт:

Точно таково же соотношение между математикой и метаматематикой: предмет первой составляют сами формальные системы, которые придумывают математики, предмет второй — описание таких формальных систем, выяснение и обсуждение их свойств.

Важность столь настоятельно подчеркиваемого нами различения математики и метаматематики трудно переоценить. Игнорирование или недооценка этого различения приводят к недоразумениям, а то и к прямым противоречиям. Осознание его важности позволило глубже уяснить логическую структуру математических методов рассуждения и четко регламентировать употребление различных формальных символов, превращая математику в чисто формальное исчисление, свободное от всяческих неявно подразумеваемых допущений и побочных смысловых ассоциаций. Только на базе таких новых представлений стало возможным дать точные определения математических операций и логических

правил, которыми математики пользовались до тех пор без ясного понимания того, что же, собственно, они делают.

Гильберт уловил самую суть проблемы, положив в основу своих попыток построения «абсолютных» доказательств непротиворечивости различие между формальным исчислением и его описанием. Он поставил задачу развития специального метода, с помощью которого можно было бы проводить доказательства непротиворечивости той же степени убедительности, что и доказательства, использующие конечные модели, на которых реализуются определенные системы постулатов. Искомый метод должен был бы состоять в исчерпывающем анализе конечного числа структурных свойств выражений в полностью формализованных исчислениях. Анализ должен исходить из точной фиксации различных видов, входящих в рассматриваемое исчисление символов, указания на способы соединения этих символов в формулы, описания способа вывода одних формул из других и давать способ решения вопроса, выводимы ли формулы какого-либо определенного вида из некоторых определенных формул посредством явно сформулированных правил оперирования с формулами. Гильберт был убежден в том, что каждое математическое исчисление можно представить «на геометрический манер», т. е. в виде такой совокупности формул, каждая из которых связана с любой другой формулой того же исчисления лишь структурными соотношениями из некоторого конечного перечня соотношений.

На этом убеждении и основывался его расчет, что он сумеет посредством систематического и исчерпывающего обозрения этих структурных свойств выражений данной системы показать, что из аксиом данного исчисления нельзя получить формально противоречащие друг другу формулы. Существеннейшим условием гильбертовской программы в первоначальной ее формулировке было разрешение употреблять в доказательствах непротиворечивости лишь такие приемы рассуждений, которые ни в какой форме не используют ни бесконечного множества структурных свойств формул, ни бесконечного множества операций над формулами.

Такие методы рассуждений он назвал «финитными», а доказательства непротиворечивости, проведенные финитными средствами, — «абсолютными». «Абсолютное» доказательство достигает своей цели с помощью некоторого минимального арсенала принципов вывода и не исходит из непротиворечивости никакой другой системы аксиом. Таким образом, если бы, например, удалось получить абсолютное доказательство непротиворечивости арифметики, оно должно было бы посредством некоторой финитной метаматематической процедуры установить невозможность одновременного вывода из аксиом (т. е. из исходных формул) арифметики с помощью фиксированных правил вывода никакой пары взаимно противоречивых формул, скажем «0 = 0» и ее отрицания «~ (0 = 0)» (здесь знак «~» означает «не»).

Вполне точных указаний на то, какие именно математические методы следует считать «финитными», Гильберт не дал. В первоначальной формулировке его программы требования, которым должны были удовлетворять абсолютные доказательства непротиворечивости, были значительно более сильными, чем в последующих разъяснениях гильбертовской программы, данных представителям школы Гильберта.

Будет, пожалуй, небесполезно сравнить метаматематику, понимаемую как теорию доказательства, с теорией шахматной игры. В шахматы играют с помощью 32 фигур определенного вида, передвигающихся по квадратной доске, разделенной на 64 клетки, причем передвижения эти («ходы») совершаются по некоторым строго определенным правилам. Разумеется, для игры не требуется никакой «интерпретации» фигур и их различных положений на доске, хотя такую интерпретацию при желании можно было бы и придумать. Например, можно было бы считать, что пешки — это армейские полки, а клетки доски — определенные географические районы и т. п. Но такого рода соглашения (интерпретации) не употребительны — на самом деле ни фигуры, ни клетки доски, ни положения фигур не означают ровно ничего вне игры как таковой. Иначе говоря, можно было бы сказать, что фигуры и их положения на доске «бессмысленны». Таким образом, игра в шахматы является далеко идущим аналогом формализованного математического исчисления. Фигуры и клетки доски соответствуют элементарным символам исчисления; допустимые правилами игры позиции соответствуют формулам исчисления; начальная позиция партии (или любой шахматной задачи) соответствует набору аксиом исчисления; последующие позиции — формулам, выводимым из аксиом (т. е. теоремам); наконец, правила игры соответствуют правилам вывода (правилам преобразования) исчисления. Аналогия простирается и дальше. Хотя сами по себе позиции (расположения фигур на доске), подобно формулам исчисления, «бессмысленны», высказывания об этих позициях, подобно метаматематическим высказываниям о формулах, вполне осмысленны.

«Меташахматное» утверждение может, например, гласить, что в данной позиции у белых возможны двадцать различных ходов, или, скажем, что в данной позиции белые, начиная, могут заматовать черных за три хода. Более того, можно говорить и об общих «меташахматных» теоремах, в доказательствах которых используется наличие лишь конечного числа возможных позиций. Можно, например, получить теорему относительно числа возможных ходов для белых в начальной (или любой другой) позиции; или, скажем, доказать теорему, согласно которой два белых коня с королем не могут форсировать мат одинокому черному королю. Эти и другие «меташахматные» теоремы удается, таким образом, доказывать, пользуясь финитными методами рассуждений, т. е. исследуя лишь конечное число возможных позиций, удовлетворяющих четко сформулированным условиям. Совершенно аналогично цель гильбертовской теории доказательства состоит в доказательстве такого же рода финитными методами невозможности вывода противоречащих друг другу формул в данном математическом исчислении.

4

Систематическое построение формальной логики

Прежде чем перейти к самой теореме Гёделя, нам придется преодолеть еще два препятствия. Прежде всего нам надо разобраться, зачем, собственно, ему понадобилась Principia Mathematica Уайтхеда и Рассела и в чем суть этой системы; далее, нам понадобится рассмотреть в качестве примера формализации дедуктивной системы один небольшой фрагмент системы Principia,и показать, как можно получить абсолютное доказательство непротиворечивости этого фрагмента.

Обычно, даже если математические доказательства проводятся с соблюдением общепринятых норм профессиональной строгости, эта строгость существенно умаляется в результате некоторого упрощения весьма принципиального характера. Дело в том, что принципы (правила) вывода, употребляемые в доказательствах, в явной форме не формулируются, так что математики применяют их не вполне осознанно. Возьмем, например, евклидовское доказательство того факта, что не существует наибольшего простого числа (целое число, как известно, называется простым, если оно не делится без остатка ни на одно число, кроме единицы и самого себя). Доказательство, проводимое методом reductio ad absurdum (от противного), выглядит следующим образом.

Пусть, в противоречии с доказываемым утверждением, имеется наибольшее простое число. Обозначим его через «x». Тогда:

1. есть наибольшее простое число.

2. Образуем произведение всех простых чисел, меньших или равных x, и прибавим к этому произведению число 1. В результате получим некоторое число y:

y = (2 x З x 5 x 7 x … x x) + 1.

3. Если у само есть простое число, то x не есть наибольшее простое число, так как у, очевидно, больше x.

4. Если y — составное число (т. е. не является простым), то и тогда х не есть наибольшее простое число; в самом деле, если у — составное, то оно должно иметь некоторый простой делитель z; но z непременно должно быть отличным от всех простых чисел 2, 3, 5, 7, …, x, меньших или равных x, так что z должно в этом случае быть простым числом, превосходящим x.

Поделиться:
Популярные книги

Ваше Сиятельство 3

Моури Эрли
3. Ваше Сиятельство
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Ваше Сиятельство 3

Сиротка 4

Первухин Андрей Евгеньевич
4. Сиротка
Фантастика:
фэнтези
попаданцы
6.00
рейтинг книги
Сиротка 4

Последний попаданец 5

Зубов Константин
5. Последний попаданец
Фантастика:
юмористическая фантастика
рпг
5.00
рейтинг книги
Последний попаданец 5

Неудержимый. Книга XV

Боярский Андрей
15. Неудержимый
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Неудержимый. Книга XV

Мимик нового Мира 6

Северный Лис
5. Мимик!
Фантастика:
юмористическая фантастика
попаданцы
рпг
5.00
рейтинг книги
Мимик нового Мира 6

Неудержимый. Книга XII

Боярский Андрей
12. Неудержимый
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Неудержимый. Книга XII

Шипучка для Сухого

Зайцева Мария
Любовные романы:
современные любовные романы
8.29
рейтинг книги
Шипучка для Сухого

Убийца

Бубела Олег Николаевич
3. Совсем не герой
Фантастика:
фэнтези
попаданцы
9.26
рейтинг книги
Убийца

Попытка возврата. Тетралогия

Конюшевский Владислав Николаевич
Попытка возврата
Фантастика:
альтернативная история
9.26
рейтинг книги
Попытка возврата. Тетралогия

Таблеточку, Ваше Темнейшество?

Алая Лира
Любовные романы:
любовно-фантастические романы
6.30
рейтинг книги
Таблеточку, Ваше Темнейшество?

Камень. Книга вторая

Минин Станислав
2. Камень
Фантастика:
фэнтези
8.52
рейтинг книги
Камень. Книга вторая

Вернуть невесту. Ловушка для попаданки 2

Ардова Алиса
2. Вернуть невесту
Любовные романы:
любовно-фантастические романы
7.88
рейтинг книги
Вернуть невесту. Ловушка для попаданки 2

Ученичество. Книга 1

Понарошку Евгений
1. Государственный маг
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Ученичество. Книга 1

Лапочки-дочки из прошлого. Исцели мое сердце

Лесневская Вероника
2. Суровые отцы
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Лапочки-дочки из прошлого. Исцели мое сердце