Teopeмa Гёделя
Шрифт:
Использование идеи кодирования, как мы уже отмечали, лежит в основе знаменитой работы Гёделя. Следуя схеме рассуждения, очень близкой к той, что проводится в парадоксе Ришара (но усовершенствуя ее при этом таким образом, что она становится неуязвимой по отношению к сформулированным выше критическим заключениям), Гёдель показывает, что метаматематические высказывания об арифметическом формализованном исчислении можно представить посредством некоторых арифметических формул внутри исчисления. Как мы покажем подробнее в следующем разделе, ему удалось найти такой метод арифметического кодирования метаматематических высказываний, что для некоторой формулы, выражающей истинное метаматематическое утверждение о формулах арифметики, ни она сама, ни ее отрицание не доказуемы в формальной арифметике. Поскольку одна из этих формул, выражающая истинное арифметическое высказывание, не выводима из арифметических аксиом, то аксиомы образуют неполную
7
Теоремы Гёделя
7.1. Гёделевская нумерация
Гёдель прежде всего описал некоторое формализованное исчисление, средствами которого можно выразить все обычные арифметические понятия и установить известные арифметические соотношения.
Гёдель использовал несколько упрошенный вариант системы, описанной в Principia Mathematics. Но для его цели точно так же подходит любое исчисление, в котором можно построить систему натуральных чисел с определенными на ней арифметическими операциями.
Формулы этого исчисления строятся исходя из некоторого запаса элементарных символов, образующих алфавит системы. В этом исчислении, как обычно, выделено некоторое множество исходных формул (аксиом) и точно перечислены правила преобразования (правила вывода), посредством которых из аксиом выводятся теоремы.
Гёдель показал, что каждому элементарному символу, каждой формуле (т. е. цепочке элементарных символов) и каждому доказательству (конечной последовательности формул) можно однозначным образом приписать некоторый номер (натуральное число). Такой номер, служащий своего рода значком, ярлыком, указывающим на отмечаемый им объект — символ, формулу или доказательство — формальной системы, мы будем называть «гёделевским номером» этого символа, формулы или доказательства [13] .
13
Имеется много различных способов приписывания гёделевских номеров, и какой из них выбрать — совершенно несущественно.
Элементарные символы, составляющие алфавит системы, бывают двух сортов: константы и переменные. Мы будем считать, что у нас есть ровно десять символов-констант, которым мы припишем в качестве гёделевских номеров числа от 1 до 10. Почти все эти символы читателю уже известны: «~» (сокращение для «не»), «» («или»), «» («если…, то…»), «=» («равно»), «0» (цифровой знак, изображающий число «нуль»), а также три «знака препинания»: левая скобка «(», правая скобка «)» и запятая «,». Кроме того, нам понадобятся еще два символа: перевернутая буква «» (читаемая как «существует» и называемая «квантором существования») и строчная латинская буква «s», обозначающая числовой оператор, сопоставляющий каждому натуральному числу непосредственно следующее за ним число. Пример: формулу « x (x = s0)» можно прочесть как «существует такое x, что x непосредственно следует за числом 0». Выпишем все используемые нами символы-константы (под ними указаны соответствующие гёделевские номера):
~ = 0 s ,
1 2 3 4 5 6 7 8 9 10
Кроме элементарных символов-констант, в алфавит нашего исчисления входят еще переменные, причем переменные трех сортов: числовые переменные «x», «y», «z» и т. д. (вместо них можно подставлять «цифры» и составленные из них (и числовых переменных) «арифметические выражения», выражающие натуральные числа); пропозициональные переменные «p», «q», «r» и т. д. (вместо них можно подставлять «формулы», выражающие высказывания);
1) различным числовым переменным приписываются различные простые числа, большие 10;
2) различным пропозициональным переменным приписываются квадраты различных простых чисел, больших 10;
3) различным предикатным переменным приписываются кубы различных простых чисел, бОльших 10.
* Кавычки (добавленные при переводе) означают здесь, что подставить можно не само написанное в правом столбце слово, а его формальную запись на языке нашего исчисления. — Прим. перев.
Возьмем какую-нибудь формулу нашей системы, например
x (x = sy)
(которую можно прочесть как «существует такое x, что x непосредственно следует за y» и которая выражает то обстоятельство, что для каждого числа есть непосредственно следующее за ним число). Выпишем под каждым из входящих в нее символов его (символа) гёделевский номер:
x ( x = s у )
V V V V V V V V
4 11 8 11 5 7 13 9
Конечно, нам бы хотелось сопоставить каждой формуле не набор номеров (как пока получилось), а один-единственный определенный номер. Но это очень легко сделать. А именно: сопоставим этой формуле произведение первых восьми простых чисел в порядке их величины, причем каждое из них в степени, показатель которой равен гёделевскому номеру соответствующего элементарного символа:
24 x 311 x 58 x 711 x 115 x 137 x 1713 x 99.
Обозначим это число, скажем, через m. Точно таким же образом мы можем приписать в качестве гёделевского номера единственное вполне определенное натуральное число каждой конечной последовательности элементарных символов, в частности каждой формуле, причем число простых сомножителей такого числа всегда будет равно числу вхождений элементарных символов в обозначаемой формуле.
В исчислении могут использоваться и символы, не входящие в его исходный («основной») алфавит; такие символы вводятся посредством определений, записанных в терминах исходных (и вообще ранее определенных) символов. Например, в наше исчисление можно ввести новый символ (константу) «·», обозначающий союз «и», определив его таким образом, чтобы запись «p·q» воспринималась как сокращение записи «~(~p~q)». Какой гёделевский номер сопоставить введенному таким образом символу? Ответ станет совершенно очевидным, когда мы заметим, что из выражений, содержащих дополнительные (введенные определениями) символы, эти новые символы можно исключить, заменив их обозначаемыми ими выражениями, составленными исключительно из исходных символов (для этого мы просто читаем соответствующие определения «справа налево»); для последних же гёделевеcкие номера мы строить умеем. Поэтому нам достаточно условиться считать гёделевским номером формулы «p·q» гёделевский номер эквивалентной ей формулы «~(~p~q)», гёделевским номером «формулы» «2 /= 3» — номер заменяемой ею «настоящей» формулы «~(ss0=sss0)» и т. п., условившись, конечно (что совсем нетрудно), об однозначном порядке таких «расшифровок».
Рассмотрим, наконец, какую-нибудь последовательность формул (могущую быть в частном случае доказательством), например последовательность
x (x = sy),
x (x = s0).
Вторая формула последовательности, читаемая как «существует число, непосредственно следующее за нулем», — выводимая из первой формулы посредством подстановки цифры 0 вместо числовой переменной.