Теорема зонтика, или Искусство правильно смотреть на мир через призму математики
Шрифт:
Но все же, вам не кажется, что эта ситуация несправедлива? Да, возможно я выгляжу, как человек, который не умеет проигрывать, но вы не думаете, что, несмотря на результат, наш ответ был более разумным, более продуманным и, в некотором смысле, менее неправильным, чем у другой команды?
Но почему в таком случае математика говорит об обратном? Почему расчеты показывают, что почти абсурдный ответ ближе к истине?
Или стоит задать вопрос немного по-другому: правильно ли мы понимаем математику, которой пользуемся? Математика не ошибается, но люди, которым она служит, иногда могут использовать ее ненадлежащим образом.
Если немного подумать, то можно представить множество подобных ситуаций. Рост кошки в среднем составляет 25 см, а лабрадора – 60 см. Некоторые
Но это заключение, к которому нас подводят числа, снова противоречит нашему естественному восприятию реальности. Кошка и собака принадлежат к одному миру. Они могут играть вместе или, по крайней мере, взаимодействовать. Они видят друг друга, чувствуют друг друга, они знают, что оба существуют. Но кошка, если, конечно, она не изучала науку, понятия не имеет о существовании бактерий. Они не являются частью ее мира, они настолько малы, что их невозможно ни увидеть, ни даже вообразить.
Можно привести еще несколько похожих примеров, которые кажутся интуитивно нелогичными, но все же математически точными. Температура на поверхности Солнца ближе к 5 °C, чем к 15 000 °C. Население Парижа ближе к населению деревни с 12 жителями, чем к населению Нью-Йорка. Если вы взвесите планету Марс, то обнаружите, что ее масса ближе к массе мячика для пинг-понга, чем к массе Земли.
Как и в случае с законом Бенфорда, эти ситуации ставят нас в логический тупик только потому, что мы думаем неверно. Потому что мы используем математический инструментарий, который плохо понимаем, в контексте, в котором он неуместен.
Как же тогда воплотить эти интуитивные размышления в математике? Ответ можно найти в тонком понятии порядка величины.
Сама идея простая, но невероятно мощная. Думать посредством порядка величины – значит думать с помощью умножения, а не сложения.
Если вы хотите сравнить числа 2 и 10, вы можете сделать это двумя разными способами. Путем сложения: сколько нужно добавить к 2, чтобы получить 10? В таком случае ответ 8. Или путем умножения: на сколько нужно умножить 2, чтобы получить 10? Тогда ответ равен 5. В первом случае разница между двумя числами получается путем вычитания: 10 : 2 = 8. Во втором – деления: 10 ч 2 = 5.
Сказать, что два числа имеют одинаковый порядок величины, значит сказать, что они близки с точки зрения умножения.
Несмотря на то, что на первый взгляд эта идея кажется довольно странной, любой, кто начинает мыслить мультипликативно, то есть посредством умножения, быстро понимает, насколько этот подход лучше соответствует нашей интуиции.
Вернемся к нашей научной викторине. Вот как я мог бы отстоять нашу победу в игре, если бы тогда мыслил здраво. Луна находится на расстоянии 384 000 километров от Земли, а наша команда ответила, что на расстоянии 800 000 км, то есть примерно в два раза дальше. Если мы поделим числа, то окажется, что наш ответ был в 2,08 раза больше верного. Наши противники ответили, что расстояние составляет 10 км, то есть в 38 400 раз меньше правильного ответа! С этой точки зрения мы действительно победили. Более того, этот результат гораздо лучше соответствует нашему интуитивному восприятию мира.
Такой подход сработает и со всеми остальными примерами. Если считать мультипликативно, то размер кошки ближе к размеру собаки, чем к размеру бактерии, масса Марса ближе к массе Земли, чем к массе мячика для пинг-понга, население Парижа ближе к населению Нью-Йорка, чем к населению маленькой деревни, и так далее.
Когда мы сравниваем два числа, независимо от контекста, в котором происходит это сравнение, чаще всего мы интуитивно прибегаем к мультипликативному мышлению. Если в вашем супермаркете товар стоимостью 200 евро подорожает на 8 евро, то, несомненно, это подорожание вас расстроит, но гораздо меньше, чем если бы на те же 8 евро подорожал товар стоимостью 2 евро. В таком случае цена увеличивается до 10 евро, то есть в 5 раз! Расстроиться – это мягко сказано. И это при том, что номинально цены выросли на одну и ту же величину.
Таким подходом к сравнению мы обязаны не только работе интеллекта. Это не уникальное свойство мышления, он естественен для нас и моделирует большинство наших взаимодействий с миром. Наше чувственное восприятие окружающего мира тоже мультипликативно.
Если я завяжу вам глаза и вложу в одну руку предмет весом 10 г, а в другую – весом 20 г, вы сразу же поймете, какой из них тяжелее. Но различить «на ощупь» предметы весом 10 кг и 10 кг и 10 г куда сложнее. Однако разница в парах одинаковая: 10 г. Или, точнее, разница одинаковая с точки зрения сложения, или аддитивности, потому что с точки зрения умножения она вопиющая: 20 г в два раза тяжелее, чем 10 г. Во втором же случае разница между двумя массами составляет всего 0,1 %.
То же можно сказать и про наше зрение. Вы когда-нибудь пробовали включить свет средь бела дня? Если солнце уже заливает комнату, это почти ничего не меняет. Яркость кажется одинаковой независимо от того, светит лампочка или нет. Но если вы включите свет ночью, то ясно увидите, как он освещает самые темные уголки, которые мгновение назад терялись в полумраке.
Тем не менее днем лампочка излучает не меньше света, чем ночью. То есть с точки зрения сложения яркость одинакова в обеих ситуациях. Но наши глаза воспринимают эту яркость иначе – относительно, то есть мультипликативно. При дневном свете яркость лампочки незначительна по сравнению с яркостью Солнца. Ночью же все меняется – она правит бал.
Это справедливо и для остальных органов чувств: осязания, зрения, вкуса, слуха, обоняния. Подумайте хотя бы о том, как вы воспринимаете течение времени, преодоленное расстояние, и, что более субъективно, интенсивность эмоций, которые испытываете. Все эти чувства гораздо проще поддаются пониманию, когда вы начинаете думать о них мультипликативно, а не аддитивно.
Наше врожденное чувство чисел
Чтобы проверить ваше чувство чисел, я предлагаю вам небольшой эксперимент. Посмотрите на этот отрезок, на котором размещены два числа: тысяча и миллиард.
Теперь постарайтесь без раздумий, инстинктивно ответить на следующий вопрос: где на этом отрезке вы отметите миллион? Не бойтесь ошибиться, правильным будет любой ответ – важно узнать, как работает ваша интуиция с большими числами.
Итак, вы указали на отрезке точку, где, по вашему мнению, находится миллион. Давайте посмотрим, о чем нам это скажет.
Вероятнее всего, в поисках ответа ваш мыслительный процесс развивался поэтапно. Как только вы ознакомились с вопросом, ваш мозг интуитивно выдал ответ. Грубо и без анализа. Затем настал черед более сложных умозаключений. Вы вспомнили все, что знаете о числах тысяча, миллион и миллиард, и выбранная вами точка немного переместилась на отрезке. Или даже сильно переместилась. Влево или вправо? Вероятно, вы также приняли во внимание то, о чем мы говорили ранее. Возможно, вам показалось, что вопрос сформулирован не очень точно, что в нем есть какой-то подвох. Вы ответили на вопрос с точки зрения аддитивности или мультипликативности? Это что-то меняет в данном случае?