Теория и методика развития математических представлений у дошкольников
Шрифт:
Важно рассмотреть вклад в теорию и методику формирования математических представлений у дошкольников отечественных ученых: Ф. Н. Блехер, Л. В. Глаголевой, А. М. Леушиной, Е. И. Тихеевой, Л. К. Шлегер и др.
В процессе работы с рекомендованной литературой необходимо обратить особое внимание на позиции исследователей по следующим вопросам:
приоритетные цели обучения детей математике;
методы изучения закономерностей развития математических
представлений у детей;
подходы к конструированию содержания обучения дошкольников
особенности организации обучения математике детей дошкольного возраста.
Кроме того, анализируя взгляды ученых и методистов, необходимо определить историческую роль данных исследований в становлении методики развития математических представлении у детей дошкольного возраста.
Необходимо проанализировать зарубежные концепции и технологии математического развития детей дошкольного возраста (США, Германия, Великобритания, Франция и др.).
1. Проанализируйте и выявите положительные и отрицательные стороны монографического и вычислительного методов обучения детей арифметике.
2. Представьте в виде таблицы вклад отечественных ученых в становление науки «Формирование математических представлений у детей дошкольного возраста» (Е. И. Тихеева, Ф. Н. Блехер, А. М. Леушина).
3. Напишите рецензию на публикации Л. В. Глаголевой «Сравнение величин предметов в нулевых группах школ», «Методы. Значение лабораторного метода». В рецензии необходимо отметить значимость, актуальность рассматриваемых вопросов, соответствие рассматриваемых положений современному состоянию психолого-педагогических и методических наук, а также соответствие предлагаемого материала для дошкольников их психофизиологическим возрастным особенностям, важность данного материала для вашей педагогической деятельности.
Микляева Н., Микляева Ю. Теория и технологии развития математических представлений у детей. – М.: Академия, 2016.
1. Блехер Ф. Н. Развитие первоначальных математических представлений у детей дошкольного возраста / Ф. Н. Блехер // Дошкольное воспитание. – 2008. – № 11. – С. 14–23.
2. Леушина А. М. Формирование элементарных математических представлений у детей дошкольного возраста. – М., 1974.-С. 5-18,29–53.
3. Павлова Л. И. «Помочь детям подняться на более высокую ступень развития» (К 115-летию со дня рождения Ф. Н. Блехер) // Управление ДОУ. – 2007 – № 8. – С. 110–117.
4. Павлова
5. Теории и технологии математического развития детей дошкольного возраста: Хрестоматия / Сост. З. А. Михайлова, Р. Л. Непомнящая, М. Н. Полякова. – 2-е изд. – СПб.: ЦВПО, 2006.
6. Теории и технологии математического развития детей дошкольного возраста / З. А. Михайлова и др. – СПб., 2008.
7. Формирование элементарных математических представлений у дошкольников / Под ред. А. А. Столяра. – М., 1988. – С. 13–32.
8. Щербакова Е. И. Теория и методика математического развития дошкольников: Учебное пособие. – М.: Изд-во Московского психолого-социального института; Воронеж: Изд-во НПО «МОДЭК», 2005.
Тема 4
Концепция Ж. Пиаже об интеллектуальном и математическом развитии детей
1. Теория Ж. Пиаже о развитии детского интеллекта.
2. Определение числа по Ж. Пиаже. Классификация и сериация.
2. Понятие принципа сохранения и стадии осознания принципа сохранения количества у детей.
4. Ж. Пиаже о развитии математических понятий у ребенка.
Современная практика математического образования нуждается в рассмотрении психологических основ развития математических представлений у детей дошкольного возраста, вскрытых в работах детского психолога Жана Пиаже.
На основе анализа рекомендованных работ Ж. Пиаже следует выяснить содержание понятия «число», подробно остановиться на логических операциях классификации и сериации, синтез которых лежит в основе математического мышления ребенка.
После этого необходимо перейти к рассмотрению таких понятий, как «принцип сохранения», «инвариантность», «обратимость», и определить связь между ними. Для демонстрации принципа сохранения дискретных и непрерывных величин необходимо подготовить и использовать наглядный материал (с бусинами, подкрашенной водой, пластилином, шнурами и палочками). Характеризуя стадии осознания ребенком принципа сохранения, целесообразно опираться на стадии интеллектуального развития ребенка, выделенные Ж. Пиаже.
При рассмотрении последнего вопроса следует остановиться на критике Жаном Пиаже целенаправленного обучения в дошкольном возрасте и рассмотреть его идею саморазвития математических представлений у детей.
1. Разработать задания для диагностики «принципа сохранения» у детей дошкольного возраста с рекомендациями для педагогов и родителей.
Конец ознакомительного фрагмента.