Теория и практика распознавания инженерных сооружений, промышленных предприятий и объектов железнодорожного транспорта при дешифрировании аэроснимков
Шрифт:
Введение
В настоящее время материалы аэросъемки, полученные цифровыми оптико-электронными системами (ЦОЭС), повсеместно находят применение в военной сфере, различных отраслях народного хозяйства и науки, связанных с изучением местности и объектов в каком-либо отношении.
Роль и место аэросъемки в современном мире, находящемся на этапе резкого обострения экологической ситуации, противостояния ведущих держав за ресурсы и сферы влияния, стремления к переделу установившейся геополитической картины мира, существенно возросла в начале XXI века. Трансформация видов и способов вооруженного противостояния, обусловленная интенсивным развитием технологий в области микроэлектроники, оптики, материалов, предусматривает ведение боевых действий
Получение необходимой информации реализуется в ходе наблюдения за предполагаемым противником с выполнением аэросъемки. Это подразумевает выполнение систематического контроля над отдельными районами местности, в которых могут произойти события, представляющие интерес, и получения сведений конкретного плана о деятельности противоборствующей стороны, сбора данных о ее военно-промышленном потенциале, о географических, метеорологических и других характеристиках ее территории.
Особенно большое значение аэросъемке придается в военной сфере в связи с резким повышением уровня боевого потенциала войск, при котором уже не является проблемой высокоточное поражение объектов противника, сохраняется лишь проблема своевременного получения информации об их состоянии и местоположении.
Важнейшее место в системе получения информации о противнике как в военное, так и в мирное время отводится воздушной разведке, способной обеспечить оперативное наблюдение за деятельностью противника на обширных территориях и в короткое время доставить получаемую информацию заинтересованным потребителям.
Цифровизация изображений позволила отображать все полученные данные на электронной карте командных пунктов и планшетах командиров.
Актуальность совершенствования цифровых аэрофотографических (оптико-электронных) систем в настоящее время во многом определяет прогресс в освоении ряда приоритетных направлений развития науки и техники. Расширяются области и непрерывно создаются новые ЦОЭС, решающие разнообразные сложные задачи в интересах обороны и обеспечения безопасности. В соответствии с Указом Президента Российской Федерации от 10 октября 2019 г. № 490 «О развитии искусственного интеллекта в Российской Федерации» утверждена Национальная стратегия развития искусственного интеллекта в Российской Федерации, которая предполагает повышение эффективности процессов планирования, прогнозирования и принятия управленческих решений, автоматизацию рутинных (повторяющихся) операций, использование автономного интеллектуального оборудования и робототехнических комплексов, интеллектуальных систем управления и т. д.
В соответствии с постановлением Правительства Российской Федерации от 28 октября 2020 г. № 1750 утвержден перечень технологий, применяемых в рамках экспериментальных правовых режимов в сфере цифровых инноваций, который предполагает развитие нейротехнологий и технологий искусственного интеллекта в области компьютерного зрения, цифрового проектирования, математического, информационного моделирования и управления жизненным циклом изделия или продукции производственной или сервисной системы, цифровых компонент робототехники для человеко-машинного взаимодействия; нейросенсорики; сенсоромоторной координации и пространственного позиционирования; сенсоров и обработки сенсорной информации; систем сбора и обработки информации для эффективного функционирования робототехнических систем; интеллектуальных систем управления робототехническими системами; систем автоматизации управления. В связи с этим разработка требований к дешифрированию аэроснимков, полученных цифровых аэрофотографическими (оптико-электронными) системами является актуальной задачей.
Аэроснимок – это двумерное изображение, полученное в результате дистанционной регистрации техническими системами собственного или отраженного излучения и предназначаемое для обнаружения, качественного и количественного изучения объектов, явлений и процессов путем дешифрирования, измерения и картографирования.
Дешифрирование аэроснимков – комплекс взаимосвязанных организационных, технологических и технических мероприятий. Успешное решение задачи дешифрирования аэроснимков во многом зависит от обоснованности и содержания проводимых мероприятий.
Сложный психофизиологический процесс дешифрирования аэроснимков предъявляет высокие требования к общим и специальным знаниям операторов-дешифровщиков в части знания принципов организации и боевого применения подразделений всех видов вооруженных сил, устройства, функционирования и признаков распознавания всех сложных объектов, а также к системе профессионально важных для них физиологических и психологических качеств.
В монографии рассмотрены вопросы, связанные с теоретическими основами и практическими рекомендациями при дешифрировании инженерных сооружений, промышленных предприятий и объектов железнодорожного транспорта на аэроснимках и подготовке дешифровщиков.
Новыми являются представленные в монографии основы подготовки операторов-дешифровщиков и пути повышения их квалификации, процесс формирования специальных дешифровочных навыков и умений у операторов-дешифровщиков, а также разработанная классификация инженерных сооружений, промышленных предприятий и объектов железнодорожного транспорта, которая позволяет при выполнении процедур обнаружения, выявлении конфигурации, определении габаритных размеров объектов систематизировать все многообразие объектов инженерных сооружений, промышленных предприятий и объектов железнодорожного транспорта к одному из видов, классов, подклассов или типов и отразить общие тактические или технические характеристики.
В монографии изложены общие вопросы применения технологий искусственного интеллекта, рассмотрена терминология и классификация, принятая в данной области науки. Представлены направления применения технологий искусственного интеллекта при дешифрировании аэроснимков, а также сформулированы основные задачи в рамках реализации технологий искусственного интеллекта в системах автоматизированного (автоматического) дешифрирования.
Представлены результаты реализации теоретических исследований при разработке и испытаниях цифровых оптико-электронных систем, используемых на современных комплексах с беспилотными летательными аппаратами «Иноходец», «Корсар», «Гранат», «Форпост», «Тахион», «Орлан», «Элерон», наземных комплексов приема и обработки информации от бортовых комплексов разведки, принятых на снабжение Вооруженных Сил Российской Федерации.
1. Основы подготовки операторов-дешифровщиков и пути повышения их квалификации
1.1. Процесс дешифрирования аэроснимков и формирование специальных дешифровочных навыков и умений у операторов-дешифровщиков
Сложный психофизиологический процесс дешифрирования аэроснимков предъявляет высокие требования к общим и специальным знаниям операторов-дешифровщиков, а также к системе профессионально важных для них физиологических и психологических качеств. Знания составляют основу содержания процесса обучения операторов-дешифровщиков. Они включают теоретические основы как общеобразовательных дисциплин (математики, физики, географии, химии, электроники и т. п.), так и специальных (топографии, аэрофотограмметрии, геологии и др.). Большое значение имеет общая эрудиция, знание основ военного дела, промышленного и сельскохозяйственного производства. Первостепенное значение имеет знание принципов организации и боевого применения подразделений всех видов вооруженных сил, устройства, функционирования и признаков распознавания всех сложных объектов, а также классификации простых объектов, их взаимосвязей и взаимозависимостей.
На первой ступени повышения квалификации дешифровщиков необходимо не только изучать специальные вопросы, но и развивать умения и навыки посредством тренировок с различными тестами.
На втором этапе повышения специальных знаний и навыков необходимо ставить более сложные задачи, например: быстрое распознавание простых и сложных объектов с последующим анализом по памяти признаков, по которым они были распознаны; чтение аэроснимков и карты, сравнение изображения с районом на карте; привязка плановых и перспективных аэроснимков к карте и их ориентирование с постепенным увеличением района поиска и сокращением времени на задачу; привязка к одному или нескольким аэроснимкам небольших вырезок из них; поиск на карте по памяти основных ориентиров, изображенных на аэроснимках, и др.