Теория игр. Искусство стратегического мышления в бизнесе и жизни
Шрифт:
На первый взгляд может показаться, что это дает вьюркам преимущество перед соперниками, прилетающими немного позже. Единственная проблема в том, что, когда птицы вскрывают цветок, они часто обламывают рыльце. Джонатан Вейнер объясняет это так:
Рыльце – это верхушка тонкостенной трубки, которая выступает в виде длинной прямой соломинки в центре каждого цветка. Когда рыльце сломано, цветок становится бесплодным. Мужские гаметы, которые содержатся в пыльце, не могут соединиться с женскими гаметами цветка. В итоге цветок кактуса увядает, не завязав плод [51] .
51
Jonathan Weiner, Beak of the Finch, 289–290.
Если у кактуса увядает цветок, исчезает основной источник пищи кактусовых вьюрков. Можно
Анализ примера
Это не совсем так по двум причинам. Вьюрки занимают определенную территорию, а значит, эти птицы (и их потомки), если на месте их обитания не останется кактусов, могут погибнуть. В этом смысле уничтожение источника пищи для птиц, которые будут обитать в этом районе в следующем году, не стоит лишней порции пыльцы. Следовательно, у птиц с таким отклонением от нормы не окажется преимущества перед другими. Однако вывод будет иным, если эта стратегия получит широкое распространение. Вьюрки расширят поиск пищи, и даже если останутся птицы, которые будут ждать естественного раскрытия цветков, это все равно не спасет рыльца их кактусов. После этого наступит голод, и тогда больше всего шансов выжить будет у тех птиц, которые с самого начала имели сильные преимущества. В таком случае дополнительный глоток нектара сыграет решающую роль.
Здесь мы видим адаптацию по принципу опухолевых клеток. Если популяция остается маленькой, она может вымереть. Но если популяция разрастается до слишком больших размеров, эта стратегия становится самой лучшей. Поскольку такая стратегия становится выигрышной даже в относительном масштабе, единственный способ остановить этот процесс – уничтожить всю популяцию и начать все с самого начала. Если на острове Дафне совсем не останется вьюрков, больше некому будет ломать рыльца цветков и кактусы снова начнут цвести. Когда на остров прилетит пара удачливых вьюрков, у них будет возможность повторить весь процесс с самого начала.
Игра, о которой здесь идет речь, весьма напоминает дилемму заключенных, это один из вариантов игры «охота на оленя», которую проанализировал в свое время философ Жан-Жак Руссо {62} . Если во время такой охоты все участники работают вместе, чтобы поймать оленя, им это удается. Проблема возникает только тогда, когда мимо кого-то из охотников пробегает заяц. Если в погоню за зайцем бросаются слишком много охотников, оставшихся мало для того, чтобы поймать оленя. В таком случае всем лучше пуститься в погоню за зайцами. В охоте на оленя оптимальная стратегия выглядит так: преследовать оленя стоит тогда и только тогда, когда вы уверены в том, что все остальные охотники сделают то же самое. У вас нет причин не преследовать оленя, кроме случаев, когда вы не доверяете другим охотникам.
62
Есть и другая интерпретация игры «охота на оленя», которую описал Жан-Жак Руссо. Мы вернемся к ней в следующей главе.
В итоге мы получаем игру в доверие. Существует два способа играть в эту игру: все действуют сообща – и жизнь прекрасна или каждый преследует только свои интересы – и жизнь становится ужасной, жестокой и короткой. Это не классическая дилемма заключенных, в которой у каждого человека есть стимул обмануть других игроков, какие бы действия они ни предпринимали. В данном случае нет никаких причин нарушать правила, если вы уверены в том, что другие поступают так же. Но доверяете ли вы им? Если даже доверяете, можете ли вы положиться на то, что они поверят вам? Или можете ли вы поверить тому, что они поверят в то, что вы доверяете им? Как сказал Франклин Рузвельт (в другом контексте), нам нечего бояться, кроме самого страха.
Для того чтобы применить свои знания о дилемме заключенных на практике, ознакомьтесь со следующими учебными примерами, приведенными в главе 14: «Сколько стоит один доллар?» и «Проблема короля Лира» .
Глава 4
Прекрасное равновесие
Роль координации
Фред и Барни – охотники на кроликов, живущие в каменном веке. Однажды вечером, когда они вместе кутили, между ними завязался разговор о делах. Обменявшись мнениями, они поняли, что, объединив свои усилия, могли бы охотиться на гораздо большего зверя, такого как олень или бизон. Тот, кто охотится в одиночку, не может рассчитывать, что ему удастся завалить
Фред и Барни договорились на следующий день поохотиться на крупного зверя и вернулись в свои пещеры. К сожалению, они слишком много выпили накануне и оба забыли, на какого зверя должны охотиться – на оленя или на бизона. Районы охоты на этих животных находятся в противоположных направлениях. В те времена не было мобильных телефонов, и все это происходило до того, как Фред и Барни стали соседями, поэтому они не могли быстро добраться до пещеры друг друга, чтобы выяснить, куда нужно идти. На следующее утро каждому предстояло самому принять решение.
Для того чтобы решить, куда идти, двум охотникам придется разыграть игру с одновременными ходами. Если мы обозначим количество мяса, которое получает каждый охотник за день охоты на кроликов, как одну единицу, тогда доля каждого из них в случае успешной координации усилий в охоте на оленя или на бизона составит три единицы. Следовательно, таблица выигрышей в этой игре выглядит так:
Эта игра значительно отличается от дилеммы заключенных, о которой шла речь в предыдущей главе. Проанализируем самое главное отличие. Оптимальный выбор Фреда зависит от того, что сделает Барни, и наоборот. Ни для одного из игроков не существует оптимальной стратегии вне зависимости от действий другого; в отличие от дилеммы заключенных в этой игре нет доминирующих стратегий. Следовательно, каждый игрок должен проанализировать возможный выбор другого игрока и с учетом этого искать свою оптимальную стратегию.
Фред размышляет следующим образом: «Если Барни пойдет туда, где пасутся олени, тогда я получу большую долю добычи, если пойду туда же, и не получу ничего, если пойду на землю бизонов. Если Барни пойдет на землю бизонов, все должно быть наоборот. Вместо того чтобы рискнуть, отправиться в один из этих районов и обнаружить, что Барни пошел в другую сторону, не стоит ли мне поохотиться на кроликов самому, как я делал это всегда, пусть это и принесет мне меньше мяса? Иными словами, не следует ли мне взять одну единицу наверняка, вместо того чтобы рисковать и получить либо три единицы, либо ничего? Это зависит от того, что, по моему мнению, сделает Барни, поэтому мне нужно стать на его место и поразмышлять о том, что думает он. Но ведь он тоже гадает, что буду делать я, и пытается поставить себя на мое место! Есть ли конец у этих повторяющихся по кругу размышлений о размышлениях?»
Попытка найти квадратуру круга
Прекрасное равновесие Джона Нэша было разработано в качестве теоретического инструмента, позволяющего найти «квадратуру круга» размышлений о размышлениях по поводу выбора других игроков в стратегических играх {63} . Идея состоит в том, чтобы найти такое решение, при котором каждый участник игры выбирает стратегию, больше всего отвечающую его интересам, в ответ на стратегию другого игрока. Если в игре складывается такая ситуация, ни у одного из игроков нет причин менять свой выбор в одностороннем порядке. Следовательно, это и есть потенциально устойчивый результат игры, в которой игроки делают индивидуальный и одновременный выбор своих стратегий. Для начала проиллюстрируем эту идею на нескольких практических примерах, затем обсудим, в какой степени равновесие Нэша позволяет предсказать результаты различных игр; при этом обоснуем причины для осторожного оптимизма и для использования равновесия Нэша в качестве отправной точки анализа практически всех игр.
63
Для тех читателей, которые не видели фильм A Beautiful Mind (в русском прокате «Игры разума») с участием Рассела Кроу в роли Нэша или которые не читали ставшую бестселлером биографию Джона Нэша Сильвии Назар с тем же названием, мы хотим пояснить следующее. Джон Нэш разработал фундаментальную концепцию равновесия в играх в 1950 году, после чего написал еще много работ огромной значимости для математики. После нескольких десятилетий тяжелой психической болезни Нэш выздоровел; в 1994 году он получил Нобелевскую премию по экономике. Это была первая Нобелевская премия, присужденная за исследования в сфере теории игр.