Теория игр. Искусство стратегического мышления в бизнесе и жизни
Шрифт:
Следовательно, в этой игре есть три равновесия Нэша {65} . Какое из них выберут в итоге оба игрока? Или они вообще не смогут достичь равновесия в этой игре? Концепция равновесия Нэша сама по себе не дает ответов на эти вопросы. Для этого необходим дополнительный анализ, основанный на других рассуждениях.
Если бы Фред и Барни встретились на холостяцкой вечернике {66} , которую устроил их общий друг, выбор охоты на оленя оставил бы более заметный след в их памяти. Если бы согласно обычаям их общины глава семьи говорил,
65
Если разрешено смешивание ходов, есть и другие равновесия Нэша. Но они несколько необычны и представляют главным образом сугубо теоретический интерес. Мы вкратце рассмотрим их в главе 5.
66
Stag party от stag (англ.) – «олень-самец». Прим. пер.
67
Bye, son (англ.) созвучно с «бизон». Прим. пер.
А что именно представляет собой эта «значимость»? Одна стратегия, скажем, охота на оленя, может быть значимой для Фреда, но этого недостаточно для того, чтобы он выбрал именно ее. Он должен спросить себя, является ли эта стратегия столь же значимой для Барни. А это, в свою очередь, поднимет вопрос о том, считает ли Барни эту стратегию значимой для Фреда. Выбор одного из нескольких равновесий Нэша требует решения той же задачи с размышлениями о размышлениях, что и сама концепция равновесия Нэша.
Для того чтобы такая «значимость» позволяла решить эту задачу, она должна включать в себя несколько уровней. Успешный выбор одного из равновесий Нэша в ситуации, когда оба игрока размышляют и действуют изолированно друг от друга, сводится к такой цепочке рассуждений: для Фреда должно быть очевидным, что для Барни очевидно, что для Фреда очевидно… что это правильный выбор. Если равновесие подразумевает выбор, очевидный до бесконечности в данном смысле, иными словами, если на нем сходятся ожидания игроков, мы называем это фокальной точкой. Это одна из нескольких новаторских концепций, которые ввел в теорию игр Томас Шеллинг.
Существование такой фокальной точки в игре зависит от многих условий, самое важное из которых – общий опыт игроков, который может быть историческим, культурным, лингвистическим или совершенно случайным. Вот несколько примеров, иллюстрирующих эту идею.
Начнем с одного из классических примеров Шеллинга. Предположим, вам сказали, что вы должны встретиться с кем-то в Нью-Йорке в назначенный день, но не сказали, где и когда. Вы даже не знаете, с кем именно вы должны встретиться, поэтому не можете связаться с этим человеком заранее (но вам сказали, что вы узнаете друг друга, когда встретитесь). Вам сказали также, что другой человек получил те же инструкции.
На первый взгляд ваши шансы на успех могут показаться довольно низкими: Нью-Йорк – огромный город, да и день длится долго. Но на самом деле многие люди успешно решают эту задачу. Со временем встречи все просто: полдень – это очевидная фокальная точка; ожидания сходятся на ней почти инстинктивно. С местом встречи немного сложнее, но в Нью-Йорке не так много ориентиров, на которых могут сойтись ожидания игроков. Это существенно сужает диапазон выбора и повышает вероятность успешной встречи.
Томас Шеллинг провел эксперименты с участием людей, приехавших из Бостона и Нью-Хейвена. В те времена эти люди должны были отправиться в Нью-Йорк поездом и приехать на Центральный вокзал; для них фокальной точкой были бы часы на этом вокзале. В наши дни многие люди выбрали бы в качестве места встречи Эмпайр-Стейт-билдинг – возможно, из-за фильма Sleepless in Seattle («Неспящие в Сиэтле») или An Affair to Remember («Незабываемый роман»). Для других очевидным «перекрестком миров» стала бы площадь Таймс-сквер.
Один из нас (Барри Нейлбафф) провел этот эксперимент в рамках ТВ-шоу Primetime на канале АВС, в программе под названием Life: The Game («Жизнь – игра») [52] .
52
Шоу Life: The Game («Жизнь – игра») вышло в эфир 16 марта 2006 года. Продолжение этого шоу, в котором угрозе было противопоставлено позитивное подкрепление, вышло в эфир 20 декабря 2006 года.
68
Участники одной пары почти час сидели возле Эмпайр-Стейт-билдинг, ожидая полудня. Было бы гораздо лучше, если бы они решили подождать в самом здании. Интересно также то, что команды, состоявшие из мужчин, бегали из одного места в другое (Автобусный терминал Портового управления, Пенсильванский вокзал, Таймс-сквер, центральный железнодорожный вокзал, Эмпайр-Стейт-билдинг) без каких-либо табличек с надписями, которые помогли бы им найти другую команду. Как и следовало ожидать, мужские команды даже встречались, но так и не узнали друг друга. Напротив, участницы женских пар сразу же сделали такие таблички. Они выбрали одно место и ждали там, когда их найдут.
Для успешного решения такой задачи важно не то, что место очевидно для вас или для других игроков, а то, что для каждого из вас очевидно, что для других очевидно, что… И если Эмпайр-Стейт-билдинг соответствует этому критерию, значит каждая команда должна отправиться именно туда, даже если кому-то не совсем удобно туда добираться, поскольку это единственное место, в котором каждая команда может рассчитывать найти другую. Если бы в игре участвовали только две команды, одна из них могла бы подумать, что очевидная фокальная точка – это Эмпайр-Стейт-билдинг, а другая – что Таймс-сквер столь же очевидное место встречи; в таком случае эти две команды не смогли бы встретиться.
Профессор Дэвид Крепс из Стэнфордской школы бизнеса провел на занятиях следующий эксперимент. Каждый из двух студентов должен был сделать выбор, не имея возможности обменяться информацией с другим студентом. Их задача состояла в том, чтобы разделить между собой список городов. Одному студенту достался Бостон, другому – Сан-Франциско (эта информация была открытой, так что оба знали города друг друга). Затем каждому дали список из девяти американских городов (Атланта, Чикаго, Даллас, Денвер, Хьюстон, Лос-Анджелес, Нью-Йорк, Филадельфия и Сиэтл) и предложили выбрать несколько из этих городов. Если студенты получали в результате два непересекающихся подмножества городов, каждому из них давали приз. Но если в их общем списке не хватало одного города или были повторения, они оба ничего не получали.
Сколько равновесий Нэша существует в этой игре? Если студент, за которым закреплен Бостон, выберет, скажем, Атланту и Чикаго, а студент, которому достался Сан-Франциско, – остальные города (Даллас, Денвер, Хьюстон, Лос-Анджелес, Нью-Йорк, Филадельфию и Сиэтл), это и есть равновесие Нэша: учитывая выбор одного игрока, любое изменение выбора, сделанного другим игроком, приведет либо к пропуску, либо к совпадению городов в их списках и снизит выигрыш того, кто отклонился от равновесия. Такая же аргументация применима в случае, если один студент выберет Даллас, Лос-Анджелес и Сиэтл, а другой – шесть оставшихся городов. Иными словами, в данной игре существует столько равновесий Нэша, сколько существует способов разделить список из девяти чисел на два разных подмножества. Существует 29 = 512 таких способов; следовательно, в данной игре присутствует огромное число равновесий Нэша.