Теория пределов и нейросети. Практикум
Шрифт:
\[1 – \cos x \approx \frac{x^2}{2}\]
Таким образом, мы можем переписать функцию:
\[f(x) \approx \frac{\frac{x^2}{2}}{5x^2} = \frac{1}{10}\]
Теперь можем найти предел:\[\lim_{x \to 0} f(x) = \frac{1}{10}\]
Таким образом, предел функции равен:
\[\lim_{x \to 0} f(x) = \frac{1}{10}\].
Традиционноерешение
lim(x->0)f(x)= lim(x->0)(1- cos x)/5x^2) = lim (x->0)(2sin^2(x/2)/5x^2) = I применим тригонометрическую формулу половинного аргумента (1 – cosx) = 2sin^2(x/2)I = 2/5 lim(x->0) (sin^2(x/2)/4(x/2)^2) = 1/10 lim(x->0)(sin^2(x/2)/(x/2)^2) = 1/10 lim(x->0)((sin(x/2)/(x/2)) = I
Ответ: 1/10.
6. Найти предел функции f(x) = (x^2 + 4 + 2x^4)/(x – 2 + 3x^4) при x стремящемся к бесконечности.
GPTutor
Чтобы найти предел функции ( f(x) = \frac{x^2 + 4 + 2x^4}{x – 2 + 3x^4} ) при ( x ) стремящемся к бесконечности (( x \to \infty )), мы можем использовать алгебраические методы пределов.
Для начала, определим степень числителя и знаменателя:
В числителе ( x^2 + 4 + 2x^4 ) наибольшая степень ( x^4 ).
В знаменателе ( x – 2 + 3x^4 ) также наибольшая степень ( x^4 ).
Теперь применим правило Лопиталя, так как степени числителя и знаменателя одинаковы и равны:
[ \lim_{{x \to \infty}} \frac{x^2 + 4 + 2x^4}{x – 2 + 3x^4} = \lim_{{x \to \infty}} \frac{8x^3 + 0 + 8x^3}{1 + 12x^3} ]
После дифференцирования числителя и знаменателя по ( x ):
[ \lim_{{x \to \infty}} \frac{8x^3 + 0 + 8x^3}{1 + 12x^3} = \lim_{{x \to \infty}} \frac{16x^3}{12x^3} = \frac{16}{12} = \frac{4}{3} ]
Таким образом, предел функции ( f(x) = \frac{x^2 + 4 + 2x^4}{x – 2 + 3x^4} ) при ( x ) стремящемся к бесконечности равен ( \boxed{\frac{4}{3}} ).Ответ:4/3.
7.Найти предел функции f(x) = 4x +2x^3 + 3 при x стремящемся к – 1.
GPTutor
Чтобы найти предел функции ( f(x) = 4x + 2x^3 + 3 ) при ( x ) стремящемся к ( -1 ), мы можем использовать алгебраические методы пределов. В данном случае, функция ( f(x) ) не содержит разрывов в окрестности ( x = -1 ), так что мы можем вычислить предел напрямую.
Вычислим предел:
[ \lim_{{x \to -1}} (4x + 2x^3 + 3) ]
Подставляем ( x = -1 ):
[ f(-1) = 4(-1) + 2(-1)^3 + 3 ]
[ f(-1) = -4 – 2 + 3 ]
[ f(-1) = -3 ]
Таким образом, предел функции ( f(x) = 4x + 2x^3 + 3 ) при ( x ) стремящемся к ( -1 ) равен ( \boxed{-3} ).
Ответ: – 3.
8. Найти предел функции f(x) = (x^2 – 3x +2)/(x^2 + 2x – 3) при x стремящемся к 1.
GPTutor
Чтобы найти предел функции ( f(x) = \frac{x^2 – 3x + 2}{x^2 + 2x – 3} ) при ( x ) стремящемся к ( 1 ), мы можем подставить ( x = 1 ) напрямую в выражение функции:
[ f(1) = \frac{1^2 – 3 \cdot 1 + 2}{1^2 + 2 \cdot 1 – 3} ]
[ f(1) = \frac{1 – 3 + 2}{1 + 2 – 3} ]
[ f(1) = \frac{0}{0} ]
Заметим, что получили неопределённость вида ( \frac{0}{0} ). Для решения этой неопределённости, мы можем применить метод деления числителя и знаменателя на ( (x – 1) ), так как ( x – 1 ) является фактором и числителя, и знаменателя:
[ f(x) = \frac{x^2 – 3x + 2}{x^2 + 2x – 3} ]
Делим числитель и знаменатель на ( (x – 1) ):
[ f(x) = \frac{(x – 1)(x – 2)}{(x – 1)(x + 3)} ]
При ( x \neq 1 ), ( x – 1 ) можно сократить:
[ f(x) = \frac{x – 2}{x + 3} ]
Теперь вычисляем предел ( f(x) ) при ( x \to 1 ):
[ \lim_{{x \to 1}} \frac{x – 2}{x + 3} = \frac{1 – 2}{1 + 3} = \frac{-1}{4} ]
Итак, предел функции ( f(x) = \frac{x^2 – 3x + 2}{x^2 + 2x – 3} ) при ( x ) стремящемся к ( 1 ) равен ( \boxed{-\frac{1}{4}} ).Ответ: 1/4.
Другой вариант решения (с помошью ChatGPT):
Для нахождения предела данной функции при x стремящемся к 1, подставим значение x = 1 в функцию:
f(1) = (1^2 – 31 + 2)/(1^2 + 21 – 3) = (1 – 3 + 2)/(1 + 2 – 3) = 0/0
Получили неопределенность вида 0/0. Для определения предела в этом случае, проведем кратное деление многочленов:
(x^2 – 3x + 2) / (x^2 + 2x – 3) = (x-1)(x-2) / (x+3)(x-1) = (x-2) / (x+3)
Теперь можно подставить x=1:
f(x) = (1-2) / (1+3) = -1 / 4
Ответ: Предел функции f(x) при x стремящемся к 1 равен 1/4.
9. Найти предел функции f(x) = ((1 + 3x)^(1/2) – (2x + 6)^(1/2))/(x^2 – 5x) при x стремящемся к 5.
GPTutor
Чтобы найти предел функции ( f(x) = \frac{\sqrt{1 + 3x} – \sqrt{2x + 6}}{x^2 – 5x} ) при ( x ) стремящемся к ( 5 ), мы начнём с проверки, не возникает ли неопределённости. Подставим ( x = 5 ):
Проверим знаменатель:
[ x^2 – 5x = 5^2 – 5 \cdot 5 = 25 – 25 = 0 ]
Знаменатель равен нулю, что означает, что есть неопределённость вида ( \frac{0}{0} ). Для разрешения этой неопределённости применим разложение в ряд Тейлора в окрестности точки ( x = 5 ).
Разложим каждый квадратный корень в ряд Тейлора:
[ \sqrt{1 + 3x} \approx \sqrt{16} = 4 + \frac{3(x – 5)}{4} ]
[ \sqrt{2x + 6} \approx \sqrt{16} = 4 + \frac{x – 5}{4} ]
Теперь подставим разложения в функцию ( f(x) ):
[ f(x) = \frac{\left( 4 + \frac{3(x – 5)}{4} \right) – \left( 4 + \frac{x – 5}{4} \right)}{x^2 – 5x} ]
[ f(x) = \frac{\frac{3(x – 5)}{4} – \frac{x – 5}{4}}{x^2 – 5x} ]
[ f(x) = \frac{\frac{2(x – 5)}{4}}{x^2 – 5x} ]
[ f(x) = \frac{\frac{1}{2}(x – 5)}{x(x – 5)} ]