Теория струн и скрытые измерения вселенной
Шрифт:
В определенном смысле статьи Перельмана появились буквально из ниоткуда. Никто не знал, что Перельман когда-либо занимался проблемами, связанными с потоком Риччи, поскольку он был известен благодаря своим успехам в совершенно иной области математики — так называемой метрической геометрии, где он доказал знаменитую гипотезу, предложенную геометрами Джефом Чигером и Детлефом Громоллом. Но за несколько лет до появления в Интернете его статей Перельман надолго пропал из виду. Иногда другие математики получали от него электронные письма, в которых он интересовался литературой по вопросам потока Риччи. Однако никто не догадывался, что Перельман серьезно работает над использованием потока Риччи для доказательства гипотезы Пуанкаре, поскольку он практически никому не сообщал об этом. По сути дела его деятельность была столь незаметна, что многие из его бывших коллег сомневались в том, что он все еще вообще занимается
Сами по себе статьи были не менее поразительны — всего шестьдесят восемь страниц текста, — что привело к тому, что другим ученым пришлось потратить немало времени на то, чтобы понять их содержание и извлечь из них ключевые аргументы, кратко набросанные Перельманом. На сегодняшний день является общепризнанным, что программа исследований, начатая Гамильтоном и продолженная Перельманом, в конце концов привела к разрешению как давней гипотезы Пуанкаре, так и более свежей проблемы Тёрстона.
Если это единодушное признание действительно имеет под собой основу, то совместные успехи Гамильтона и Перельмана представляют собой важнейшее достижение геометрического анализа. Согласно моим расчетам, почти половина теорем, лемм и прочих вспомогательных утверждений, полученных в этой области на протяжении последних тридцати лет, были использованы в работах Гамильтона и Перельмана, что и привело в конце концов к доказательству гипотезы Пуанкаре.
Итак, вы увидели некоторые из тех гвоздей, которые по самые шляпки загнал в дерево молоток геометрического анализа. Однако вы, наверное, помните, что я обещал описать три важнейших достижения геометрического анализа. Успехи в области четырехмерной топологии и доказательство гипотезы Пуанкаре вместе с методами потока Риччи, понадобившимися для ее доказательства, представляют собой только два из них. Остается еще и третье достижение — то, в котором я принял непосредственное участие и о котором пойдет речь далее.
Четвертая глава
Слишком хорошо, чтобы быть правдой
Третье важнейшее достижение, полученное при помощи нашего нового «молотка» — геометрического анализа, — относится к гипотезе, выдвинутой в 1953 году Эудженио Калаби, математиком, с 1964 года работающим в Пенсильванском университете. Эта гипотеза, как будет показано далее, стала ключевой в обсуждаемой области и оказала огромнейшее влияние на всю мою дальнейшую научную карьеру. Я считаю своей особенной удачей то, что мне довелось наткнуться на идеи Калаби, точнее, налететь на них лбом — тогда еще не было принято носить шлемы. Конечно, каждый математик, достаточно талантливый и подготовленный, с большой вероятностью внесет определенный вклад в исследуемую им область, однако чтобы найти задачу, специально предназначенную для твоего таланта и образа мыслей, необходимо иметь еще и особое везение. В математике мне везло не один раз, но столкновение с гипотезой Калаби в этом отношении для меня является удачей из удач.
Задача имеет форму теоремы, связывающей топологию комплексных пространств, о которых мы поговорим далее, с их геометрией, или кривизной. Основная идея состоит в следующем. Возьмем некое необработанное топологическое пространство, представляющее собой что-то вроде пустого участка земли, специально расчищенного для предстоящего строительства. Соорудим на нем некую геометрическую структуру, которую впоследствии можно еще и декорировать различными способами. Вопрос, который задал Калаби, хотя и содержит некоторые оригинальные идеи, тем не менее принадлежит к тому типу вопросов, которые очень часто ставятся геометрами, а именно: какие из строго определенных геометрических структур допустимы для заданной топологии или, грубо говоря, для заданной формы объекта?
Рис. 4.1. Геометр Эудженио Калаби (фотография Дирка Феруса)
Ответ на этот вопрос едва ли покажется кому-либо имеющим важное значение для физики. Но посмотрим на него с другой стороны. Гипотеза Калаби касается пространств, имеющих особый тип кривизны, известный как кривизна Риччи, которая вкратце будет описана позже. Как оказалось, кривизна Риччи определенного пространства напрямую зависит от распределения материи в этом пространстве. Пространство, называемое риччи-плоским — кривизна Риччи которого равна нулю, — представляет собой пространство, материя в котором отсутствует. Рассматривая поставленный Калаби вопрос с этой точки зрения, можно увидеть его непосредственную взаимосвязь с общей теорией относительности
Калаби утверждает, что, когда эта гипотеза впервые пришла ему в голову, «она совершенно не была связана с физическими представлениями. Это была чистая геометрия»[42]. Я не сомневаюсь в истинности его слов. Это утверждение могло бы быть точно так же сформулировано, даже если бы Эйнштейну никогда не приходила в голову идея общей теории относительности. И доказательство этой гипотезы могло бы быть получено, даже если бы теории Эйнштейна не существовало. Впрочем, я уверен, что в то время, когда Калаби сформулировал свою задачу — почти через сорок лет после публикации Эйнштейном его революционных статей, — теория Эйнштейна была уже широко распространена. Едва ли найдется хотя бы один математик, который никогда не размышлял над физическими идеями Эйнштейна, пусть даже без какой-либо определенной цели. К тому времени уравнения Эйнштейна прочно связали искривление пространства и гравитацию, глубоко пустив корни в математику. Можно сказать, что общая теория относительности стала частью коллективного сознания или, наоборот, «коллективного бессознательного», — как сказал бы Юнг.
Безотносительно к тому, сознательно или бессознательно Калаби затрагивал физические проблемы, связь между его гипотезой и вопросами гравитации стала для меня важнейшим побудительным фактором, чтобы приняться за эту работу. Я понял, что доказательство гипотезы Калаби может стать важным шагом на пути к раскрытию какой-то глубокой тайны.
Вопросы, подобные тому, который поставил Калаби, часто формулируют в терминах метрики или геометрии пространства — набора функций, который позволяет определить длину любой траектории в соответствующем пространстве, — с этим понятием мы впервые столкнулись в первой главе. Всякое топологическое пространство способно принимать множество различных форм и, следовательно, обладать множеством всевозможных метрик. Одно и то же топологическое пространство может иметь форму куба, сферы, пирамиды или тетраэдра — геометрических тел, эквивалентных с топологической точки зрения. Вопрос, который затрагивает гипотеза Калаби, относящийся к разновидностям метрики, допустимым в данном пространстве, может быть переформулирован следующим эквивалентным образом: какие из геометрических форм возможны для пространств данной топологии?
Конечно, Калаби не использовал в точности такие термины, когда выдвигал свою гипотезу. Его цель состояла в том, чтобы узнать, будет ли определенный вид комплексного многообразия, а именно пространство, являющееся компактным, то есть имеющим ограниченную протяженность, и «кэлеровым» — удовлетворяющим определенным топологическим условиям (имеющим определенную характеристику, известную как «обращение в нуль первого класса Черна»), — иметь риччи-плоскую метрику. Нужно признать, что все ключевые составляющие данной гипотезы весьма сложны для непосредственного восприятия, поэтому определение всех понятий, необходимых для понимания утверждения Калаби, таких как комплексные многообразия, геометрия и метрика Кэлера, первый класс Черна и кривизна Риччи, — потребует определенных усилий.
На протяжении данной главы всем этим понятиям будет дано объяснение. При этом основной идеей гипотезы является возможность — с математической и геометрической точек зрения — существования пространств, удовлетворяющих всему этому сложному набору требований.
Мне кажется, что такие пространства столь же редки, как алмазы, и гипотеза Калаби предоставляет карту, позволяющую их обнаружить. Зная, как решить уравнение для одного из многообразий и понимая общую структуру этого уравнения, при помощи той же идеи можно решить соответствующие уравнения для всех кэлеровых многообразий, удовлетворяющих заданным требованиям. Гипотеза Калаби предлагает существование общего правила, указывающего нам на то, что «алмазы» находятся именно в данном месте — или, иными словами, на то, что та метрика, которую мы ищем, существует. Даже если пока мы не способны увидеть ее во всей красе — мы не сомневаемся в том, что она действительно существует. Среди всех математических теорий эта казалась мне скрытым сокровищем — чем-то сродни неограненному алмазу.