Теория струн и скрытые измерения Вселенной
Шрифт:
Давайте возьмем одну частицу, скажем, d-кварк. Как и в случае других материальных частиц, в описание поля d-кварка входят два компонента: один – соответствующий правосторонней форме этой частицы, а второй – левосторонней. Поскольку масса в квантовой теории поля является результатом взаимодействия с полем Хиггса, мы умножаем два поля для d-кварка (лево- и правосторонние формы) на само поле Хиггса. Результат умножения в этом случае соответствует этому взаимодействию, то есть величина произведения, а точнее величина смешанного произведения, показывает, насколько сильным или слабым является взаимодействие d-кварка и поля Хиггса.
Но это только первая часть сложной процедуры. Следующая сложность возникает из-за того, что величина смешанного произведения может меняться по мере перемещения по «поверхности» Калаби-Яу. С другой стороны, константа взаимодействия Юкавы не является
Следует помнить, что интегрирование фактически является процессом усреднения. У вас есть некоторая функция (в нашем случае произведение трех полей), которая принимает различные значения в разных точках на многообразии, а вам необходимо получить ее среднее значение. Это необходимо сделать, поскольку константа взаимодействия Юкавы является числом, а не функцией, тогда как масса частицы также является числом. Поэтому следует разбить многообразие на мелкие участки и определить значение функции на каждом участке. Затем сложить все значения и разделить на количество участков, получив среднее значение.
Хотя этот метод может показаться довольно простым, он не даст точного правильного ответа. Проблема состоит в том, что многообразие Калаби-Яу, с которым мы работаем, обладает кривизной, и если взять крошечную «прямоугольную» заплатку, допустив на мгновение, что мы находимся в двухмерном пространстве размером dx Ч dy, то размер такого участка будет изменяться в зависимости от того, насколько велика его кривизна. Вместо этого следует взять значение функции в точке, где находится заплатка, и затем умножить это значение на весовой коэффициент, зависящий от размера заплатки. Другими словами, необходим способ измерения размера заплатки. А для этого необходима метрика, которая подробно описывала бы геометрию многообразия. Но здесь имеется одна загвоздка, о которой мы уже неоднократно упоминали: пока еще никто не смог предложить метод вычисления метрики Калаби-Яу явно, то есть точно.
Здесь вас может ждать ловушка: без метрики невозможно получить массу, а без массы невозможно узнать, насколько близка имеющаяся модель к Стандартной модели. Но существуют несколько математических методов, а именно численные методы, реализуемые с помощью компьютера, которые можно использовать для приближенного вычисления метрики. Затем возникает вопрос, достаточно ли хороша использованная аппроксимация для получения приемлемого ответа.
В настоящее время применяют два основных метода, и оба в некоторой степени опираются на гипотезу Калаби. Эта гипотеза гласит (как уже отмечалось неоднократно), что если многообразие удовлетворяет определенным топологическим условиям, то оно обладает риччи-плоской метрикой. Не создав саму метрику, я не мог бы доказать, что такая метрика существует. При доказательстве был применен так называемый аргумент деформации, это означает, что если начать с чего-то, скажем, с некой метрики, и деформировать ее определенным образом, то этот процесс в конце концов сойдется к необходимой метрике. Если вы можете доказать, что такой процесс деформации стремится к нужному решению, то существует хороший шанс, что можно найти численную модель, которая также будет сходиться.
Недавно два физика, Мэтт Хедрик из Университета Брандейса и Тоби Вайсман из Королевского колледжа, произвели численные расчеты в соответствии с этими принципами, разработав аппроксимированную метрику для поверхности K3, четырехмерного многообразия Калаби-Яу, с которым мы часто имеем дело. Они использовали общую стратегию под названием дискретизация, заключающуюся в том, чтобы взять объект с бесконечным числом точек, например точки, составляющие непрерывную кривую, и представить ее конечным (дискретным) числом точек, надеясь, что этот процесс, в конце концов, сойдется непосредственно на этой кривой. Хедрик и Вайсман считают, что этот процесс сходится, и хотя полученные ими результаты выглядят обнадеживающе, пока они не смогли доказать наличие сходимости.
Один из недостатков описанного метода, не имеющий отношения к анализу Хедрика и Вайсмана, связан с ограничениями современной техники: нынешним компьютерам просто не хватает мощности, чтобы рассчитать подробную метрику для шестимерных многообразий Калаби-Яу. Вычисление в шести измерениях требуют неимоверно больше операций, чем решение четырехмерной задачи. Несомненно, компьютеры продолжают совершенствоваться, и, возможно, они вскоре станут достаточно мощными, чтобы выполнять вычисления и для шести измерений.
Между
Рис. 9.5.С помощью процесса дискретизацииможно аппроксимировать одномерную кривую и двухмерную поверхность конечным числом точек. Такая аппроксимация, естественно, будет точнее при увеличении количества точек
Если мы знаем, как измерить расстояние в более крупном пространстве (большом сыре), то мы также будем знать, как измерить размер дырки. В этом смысле вложенное пространство, или дыра, наследует метрику из «сырного» опорного пространства, в котором она находится. В 1950-е годы Джон Нэш доказал, что если поместить римановы многообразия в пространство с достаточно большим количеством измерений, то можно получить любую желаемую индуцированную метрику. Но теорема Нэша о вложении, являющаяся одной из самых великих работ этого знаменитого математика, применима к действительным многообразиям, помещенным в действительное пространство. В общем случае, комплексный вариант теоремы Нэша неверен. Но я считал, что комплексная версия этой теоремы может быть верной при определенных обстоятельствах. Например, я аргументировал, что большой класс кэлеровых многообразий может быть вложен в проективное пространство высокой размерности таким образом, что индуцированная метрика будет сколь угодно близка к исходной метрике при условии, что индуцированная метрика соответствующим образом масштабирована или «нормализована», то есть все ее векторы умножены на константу. Будучи специальным случаем кэлеровых многообразий, многообразия Калаби-Яу с риччи-плоской метрикой удовлетворяют этому топологическому условию. Это означает, что можно всегда индуцировать риччи-плоскую метрику, и ее можно всегда аппроксимировать путем вложения многообразия в опорное или проективное пространство со значительно большей размерностью.
Рис. 9.6.В геометрии часто говорят о «вложении» объекта или пространства в «опорное пространство» высокой размерности. В данном случае мы вложили квадрат, то есть одномерный объект, поскольку он состоит из изогнутого несколько раз отрезка прямой, в двухмерное опорное пространство – сферу
Ганг Тиан, будучи в то время моим аспирантом, доказал это в статье, вышедшей в 1990 году, которая фактически была его диссертационной работой. С тех пор к моему исходному утверждению было добавлено несколько важных уточнений, включая диссертацию еще одного моего аспиранта Вей-Донг Руана о том, что возможна более точная аппроксимация риччи-плоской метрики. Главное уточнение было посвящено способу вложения многообразия Калаби-Яу в опорное пространство. Нельзя сделать это бессистемно. Идея состоит в том, чтобы выбрать соответствующее вложение так, чтобы индуцированная метрика была наиболее близка к риччи-плоской метрике. Для этого следует поместить многообразие Калаби-Яу на возможно лучшее место, так называемую сбалансированную позицию, которая является той позицией среди всех возможных, где наследуемая метрика приближается вплотную к риччи-плоской.
Понятие сбалансированной позиции ввели в 1982 году Петер Ли и я для случая подмногообразия (или подповерхностей) на сфере, находящейся в действительном пространстве. Затем мы пошли дальше – к общему случаю подмногообразия в сложном опорном (или проективном) пространстве со множеством измерений. В те годы Жан-Пьер Бургиньон, являющийся в настоящее время директором Института высших научных исследований, начал с нами сотрудничество, которое вылилось в 1994 году в совместную статью по этой теме.