Чтение онлайн

на главную - закладки

Жанры

Теория струн и скрытые измерения Вселенной
Шрифт:

«Можно создавать физические теории, которые интересны математикам, но в конечном счете, мне хотелось бы понять реальный мир», – говорит Фолкер Браун, физик из Дублинского института перспективных исследований.[155] В нашей попытке связать теорию струн и многообразия Калаби-Яу с реальным миром очевидной точкой сравнения является физика элементарных частиц.

Стандартная модель, которая описывает частицы материи и частицы – переносчики взаимодействий, движущиеся между ними, является одной из самых успешных теорий всех времен, но она не является учением о природе по ряду отношений. Во-первых, эта модель имеет около двадцати свободных параметров, таких как массы электронов и кварков, которые модель не способна предсказать. Эти величины необходимо вводить «вручную», что ставит многих ученых-теоретиков в тупик. Мы не знаем, откуда берутся эти числа, и ни одно из них, похоже, не находит логического математического обоснования. Струнные теоретики надеются найти математическое обоснование с единственным свободным параметром, кроме напряжения струн или линейной плотности энергии, который был бы связан с геометрией пространства. Силы и частицы при выборе геометрии

должны быть полностью зафиксированы. Вышеупомянутая статья 1985 года Филиппа Канделаса, Гари Горовица, Эндрю Строминджера и Эдварда Виттена (см. шестую главу) «показывает, что можно свести все ключевые моменты воедино и получить мир, который выглядит, по крайней мере, в первом приближении, как Стандартная модель», – утверждает Канделас. – «Тот факт, что вы можете это сделать в теории, которая включает гравитацию, вызвал большой интерес к теории струн».[156] Один из успехов модели Канделаса и других ученых заключается в том, что она вводит понятие хиральных фермионов – особенности Стандартной модели, в соответствии с которой каждая материальная частица обладает своего рода «доминированием одной из рук»: леворукая версия отличается от ее праворукого зеркального отображения. Как мы видели ранее, эта модель также подразделяет элементарные частицы на четыре семейства, или поколения, а не на три, как Стандартная модель. Хотя эти числа и отличаются на единицу, Канделас утверждает, что «главное было показать, что можно получить различные поколения, то есть повторяемую структуру, наблюдаемую в Стандартной модели».[157] Строминджер придерживался тех же оптимистических взглядов, называя новаторские компактификации Калаби-Яу «важным скачком от базовых принципов теории струн до чего-то близкого к миру, в котором мы живем. Это похоже на игру в баскетбол, когда мяч, брошенный игроком с противоположного конца поля, попадает в корзину, – отмечает он. – Мы вплотную приблизились к пространству всех явлений, которые, возможно, могли бы произойти во Вселенной. Но нам хочется большего: нам хочется найти нечто не просто более-менее верное, а безусловно верное».[158] Примерно через год Брайан Грин с коллегами сделали шаг вперед, создав модель, которая давала три поколения, так необходимые для наших теорий, хиральные фермионы, правильное значение суперсимметрии, которое мы обозначаем, как N= 1, нейтрино с некоторой массой (что хорошо), но не слишком большой (что еще лучше); в ней также получались поля, связанные с взаимодействиями Стандартной модели (сильным, слабым и электромагнитным). Возможно, самым большим недостатком этой модели являлось наличие некоторых нежелательных дополнительных частиц, которые не были частью Стандартной модели и от которых следовало избавиться тем или иным способом. Что касается плюсов, то я был поражен простотой метода: фактически все, что надо было сделать авторам модели, – это «выбрать» многообразие Калаби-Яу, причем именно то, которое подведет нас вплотную к получению Стандартной модели. Хотя за прошедшие десятилетия наблюдается значительный прогресс в ряде областей, теория струн и струнные теоретики все еще до конца не поняли Стандартную модель. Даже с высоты наших сегодняшних познаний мы не уверены, может ли теория струн воспроизвести Стандартную модель.

В настоящее время, несмотря на сложность задачи, ее приверженцы надеются, что теория струн не только впишется, но фактически выйдет за рамки Стандартной модели, которая находится там, куда, по их мнению, мы должны прийти. Мы уже знаем, что Стандартная модель не является последним словом в физике. За последнее десятилетие ее неоднократно изменяли или расширяли на основе экспериментальных данных, например, в 1998 году обнаружили, что нейтрино, которые считались безмассовыми, на самом деле обладают некоторой массой. Более того, мы столкнулись с темной материей и темной энергией – двумя таинственными формами, составляющими примерно 96% Вселенной, о которых Стандартная модель ничего не сообщает. Мы ожидаем новых открытий, объясняющих это: или будут обнаружены суперсимметричные частицы – возможные кандидаты на роль темной материи, или будет обнаружено что-то совершенно неожиданное, например с помощью Большого адронного коллайдера, разгоняющего встречные пучки протонов с высокими энергиями. И хотя Канделас с сотрудниками и Грин с сотрудниками не смогли воспроизвести Стандартную модель, их компактификации опередили ее, по крайней мере в одном аспекте, так как они открыли дорогу к достижению минимальной суперсимметричной Стандартной модели (МССМ). МССМ является расширенной версией традиционной модели, куда ввели суперсимметрию, что означает включение всех суперсимметричных партнеров, которые не включены в саму Стандартную модель. Последующие успехи реализации Стандартной модели на основе теории струн, которые мы обсудим позже, также включают суперсимметрию.

Тем, кто считает, что суперсимметрия должна стать частью теории о природе, а в этот список, вероятно, войдут (хотя он и не окончательный) большинство струнных теоретиков, конечно, одной Стандартной модели недостаточно. Существует другой крупный недостаток, который неоднократно будет упоминаться на страницах этой книги, а именно: Стандартная модель, теория физики элементарных частиц, ничего не говорит о гравитации, поэтому она никогда не сможет дать полное описание Вселенной. Гравитация выпадает из этой модели по двум причинам.

Во-первых, она намного слабее, чем другие силы – сильные, слабые и электромагнитные, и является совершенно несущественной при изучении взаимодействий частиц при малых расстояниях. Сила гравитационного взаимодействия между двумя протонами примерно в 10 35раз слабее, чем электромагнитное взаимодействие. Например, магнит размером с пуговицу способен за счет электромагнитного взаимодействия оторвать от земли канцелярскую скрепку, преодолевая при этом силу гравитации всей планеты Земля;

Во-вторых, несмотря на широкое обсуждение, пока никто не знает, как связать гравитацию, которая описывается общей

теорией относительности, и другие силы в одну цельную теорию. Если теории струн удастся воспроизвести Стандартную модель, введя в нее гравитацию, то мы будем намного ближе к полной теории природы. В таком случае мы получим не только Стандартную модель с гравитацией, но и суперсимметричную Стандартную модель с гравитацией.

Физики пытаются использовать различные методы для реализации такой Стандартной модели, включая орбифолды («орбитальные многообразия», похожие на многообразия в плоском пространстве), пересекающиеся браны, расположенные друг над другом браны и аналогичные вещи, достигнув значительного прогресса на многочисленных фронтах. Однако в нашей дискуссии будет сделан акцент только на одной области, а именно Е8ЧЕ8 гетеротической теории струн, являющейся одной из пяти вариаций этой теории. Мы сделали такой выбор не потому, что считаем ее самой перспективной (я не могу об этом судить), но из-за того, что усилия, приложенные в этом направлении, тесно связаны с геометрией, то есть дисциплиной, которая, бесспорно, имеет наиболее длинную историю попыток перехода от геометрии Калаби-Яу к реальному миру.

Я не подыгрываю геометрии из-за того, что она является во многих отношениях главной темой этой книги. Она жизненно важна для попытки, о которой идет речь. Во-первых, мы не можем описать силы – важную часть Стандартной модели и любой предполагаемой теории природы – без геометрии. Как сказал Кумрун Вафа, «все четыре взаимодействия имеют под собой геометрическую основу, а три из них – электромагнитное, слабое и сильное – связаны между собой симметрией»[159]. Стандартная модель объединяет вместе три силы и связанные с ними группы (или калибровки) симметрии: специальную унитарную группу 3 или SU(3), которая соответствует сильным взаимодействиям; специальную унитарную группу 2 или SU(2), которая соответствует слабым взаимодействиям, и первую унитарную группу или U(1), которая соответствует электромагнитным взаимодействиям. Симметричная группа состоит из множества всех операций, таких как вращение, которые можно выполнять с объектом, чтобы он при этом оставался неизменным. Вы берете объект и применяете к нему симметричную операцию один или столько раз, сколько хотите, и в конце объект будет выглядеть так же, как в начале. Фактически, вы не можете сказать, производились ли с этим объектом какие-либо манипуляции.

Возможно, самой простой группой для описания является группа U(1), которая включает все вращения, которые вы совершаете с кругом на плоскости. Это одномерная симметричная группа, поскольку вращения происходят вокруг одной одномерной оси, перпендикулярной кругу и проходящей через его центр. SU(2) связана с вращениями в трех измерениях, а более абстрактная SU(3) включает вращения в восьми измерениях. В этом случае эмпирическое правило состоит в том, что любая группа SU(n) обладает симметрией размерности n 2 1. Размерности трех подгрупп являются аддитивными, это означает, что общая симметрия Стандартной модели является двенадцатимерной (1 + 3 + 8 = 12).

В качестве решений уравнений Эйнштейна многообразия Калаби-Яу определенной геометрии могут помочь нам произвести расчет гравитационной части нашей модели. Но могут ли эти многообразия учитывать другие силы, входящие в Стандартную модель, и если да, то каким образом? Для ответа на этот вопрос, боюсь, нам придется выбрать окольный путь. На сегодняшний день физика элементарных частиц – это квантовая теория поля, что означает, что все силы, а также все частицы представлены полями. Зная поля, пронизывающие четырехмерное пространство, мы можем вывести связанные с ними силы. Эти силы, в свою очередь, могут быть представлены в виде векторов, обладающих направлением и длиной, это означает, что в каждой точке пространства объект будет испытывать притяжение и отталкивание в определенном направлении и с определенной силой. Например, в произвольной точке Солнечной системы сила тяготения, приложенная к такому объекту, как планета, вероятно, будет направлена к Солнцу, а величина этой силы будет зависеть от расстояния до Солнца. Электромагнитная сила, действующая на заряженную частицу, находящуюся в данной точке, точно так же будет зависеть от ее положения относительно других заряженных частиц.

Стандартная модель является не просто теорией поля, но специальным видом теории поля, называемой калибровочной теориейи получившей широкое распространение в 1950-е годы благодаря работе физиков Чжэньнин Янга и Роберта Миллса (впервые упомянутых в третьей главе). В основе этой теории лежит идея о том, что Стандартная модель объединяет различные симметрии в сложную группу симметрий, которую обозначают как SU(3)ЧSU(2)ЧU(1). Эти симметрии являются калибровочными, что делает их специфическими и непохожими на обычные симметрии. Можно взять одно из разрешенных преобразований симметрии, например вращение на плоскости, и применить его по-разному в различных точках пространства-времени, выполнив поворот, скажем, на 45° в одной точке, на 60° в другой и на 90° в третьей. Несмотря на неоднородность применения симметрии, «уравнения движения», которые управляют динамической эволюцией полей, не изменятся, как и вся остальная физика. Вообще ничего не изменится.

Симметрии, как правило, не работают таким образом, если они не являются калибровочными симметриями. Фактически Стандартная модель имеет четыре «глобальные» симметрии, связанные с частицами вещества и сохранением заряда, которые не являются калибровочными. Эти глобальные симметрии действуют на материальные поля Стандартной модели, которые мы обсудим позже. В Стандартной модели и вообще в теории поля существует еще одна глобальная симметрия, которая не является калибровочной. Эта симметрия называется симметрией Пуанкаре. Она включает простые переносы, такие как перемещение всей Вселенной на один метр вправо или проведение одного и того же эксперимента в двух разных лабораториях, и вращения, когда конечный результат выглядит аналогично исходному.

Поделиться:
Популярные книги

Прометей: повелитель стали

Рави Ивар
3. Прометей
Фантастика:
фэнтези
7.05
рейтинг книги
Прометей: повелитель стали

Гром над Академией Часть 3

Машуков Тимур
4. Гром над миром
Фантастика:
фэнтези
5.25
рейтинг книги
Гром над Академией Часть 3

Уязвимость

Рам Янка
Любовные романы:
современные любовные романы
7.44
рейтинг книги
Уязвимость

Войны Наследников

Тарс Элиан
9. Десять Принцев Российской Империи
Фантастика:
городское фэнтези
попаданцы
аниме
5.00
рейтинг книги
Войны Наследников

Законы рода

Flow Ascold
1. Граф Берестьев
Фантастика:
фэнтези
боевая фантастика
аниме
5.00
рейтинг книги
Законы рода

«Три звезды» миллиардера. Отель для новобрачных

Тоцка Тала
2. Три звезды
Любовные романы:
современные любовные романы
7.50
рейтинг книги
«Три звезды» миллиардера. Отель для новобрачных

Мимик нового Мира 13

Северный Лис
12. Мимик!
Фантастика:
боевая фантастика
юмористическая фантастика
рпг
5.00
рейтинг книги
Мимик нового Мира 13

Месть за измену

Кофф Натализа
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Месть за измену

Мастер 3

Чащин Валерий
3. Мастер
Фантастика:
героическая фантастика
попаданцы
аниме
5.00
рейтинг книги
Мастер 3

Не грози Дубровскому! Том 11

Панарин Антон
11. РОС: Не грози Дубровскому!
Фантастика:
фэнтези
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Не грози Дубровскому! Том 11

Наваждение генерала драконов

Лунёва Мария
3. Генералы драконов
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Наваждение генерала драконов

Огненный князь 4

Машуков Тимур
4. Багряный восход
Фантастика:
попаданцы
аниме
5.00
рейтинг книги
Огненный князь 4

Мужчина не моей мечты

Ардова Алиса
1. Мужчина не моей мечты
Любовные романы:
любовно-фантастические романы
8.30
рейтинг книги
Мужчина не моей мечты

Золушка по имени Грейс

Ром Полина
Фантастика:
фэнтези
8.63
рейтинг книги
Золушка по имени Грейс