Термодинамика реальных процессов
Шрифт:
Зная меры экстенсивности dx и интенсивности Рх простого силового (механического) взаимодействия, нетрудно найти комплексную характеристику, которая с количественной стороны определяла бы это взаимодействие в целом. Очевидно, что ни одна из мер в отдельности не в состоянии отразить сути, а значит, не может служить мерой этого взаимодействия. Здесь нам опять придет на помощь метод эстафеты - передачи в ОТ известных понятий.
Соответствующая комплексная характеристика была известна уже Архимеду, который сформулировал свое знаменитое золотое правило механики. Эта характеристика именуется работой, обозначается через dQx и измеряется в джоулях. Она равна произведению силы Рх (Н) на перемещение dx (м), то есть
dQx = Рх dx Дж (28)
Отсюда
Работа представляет собой количественную меру простого силового взаимодействия между ансамблем и квантами, то есть определяет количество воздействия квантов на ансамбль и наоборот. Она может быть как положительной, так и отрицательной: все зависит от направления силы - к ансамблю или от него. При этом образование ансамбля и его распад сопровождаются совершением работ прямо противоположных знаков.
Очень важно подчеркнуть, что работа совершается именно в процессе образования или распада ансамбля, то есть в процессе переноса квантов. При отсутствии перемещения квантов (dx = 0) работы нет (dQx = 0). Следовательно, в готовом и неподвижном ансамбле работа равна нулю, ибо там нет перемещения. В связи с этим уместно вспомнить следующие слова великого Ньютона: «Сила проявляется единственно только в действии и по прекращении действия в теле не остается».
Таким образом, в теле (ансамбле) нет работы, перемещения и силы. Но зато есть явление силового взаимодействия, обеспеченное соответствующим веществом, оно цементирует кванты в единое целое и одновременно берет на себя заботу о том, чтобы при распаде ансамбля вновь совершалась работа. Иными словами, благодаря этому явлению ансамбль вначале как бы аккумулирует внешние воздействия со стороны присоединяющихся квантов вещества. При распаде ансамбля, наоборот, аккумулированные воздействия вновь возвращаются квантам в виде работы противоположного знака. Необходимо с количественной стороны определить это свойство ансамбля, то есть найти соответствующую меру [ТРП, стр.88-89].
7. Мера количества поведения вещества.
Мы убедились, что ансамбль простых явлений формируется в процессе силового поведения квантов, однозначно определяемого работой взаимодействия dQх . Очевидно, что количество поведения, аккумулированного ансамблем, должно быть как-то связано с работой dQx , но как именно, мы пока сказать не можем, это выяснится лишь в ходе последующих рассуждений. Обозначим меру количества поведения вещества ансамбля через U. Эта величина соответствует характеристике N4 в основном уравнении ОТ (14) применительно к ансамблю простых явлений (26), то есть
N4 = U (29)
Таким образом, у нас есть две главные меры, входящие в уравнение (14). Согласно этому уравнению, мера N4 из равенства (29) является функцией экстенсора NI из соотношения (27). Поэтому все интересующие нас сведения о свойствах величины U мы легко можем получить путем анализа основного уравнения, записанного через новые меры (27) и (29). Заранее можно лишь сказать, что мера U, подобно работе, перемещению и силе, должна быть в определенном смысле универсальной.
Подведем некоторые итоги. Определение физического содержания главных количественных мер, входящих в уравнение (26), мы начали с экстенсора N1 , который характеризует количество вещества ансамбля. На второй ступени эволюции таких экстенсоров оказалось несколько, именно l (см. уравнение (27)). Сложнее было с определением меры количества поведения вещества. С целью выяснения смысла меры N4 пришлось рассмотреть механизм силового взаимодействия между квантами вещества в ансамбле и привлечь для этого такое понятие, как универсальная мера количества воздействия, или работа dQx , распадающаяся на экстенсивную dх и интенсивную Рх составляющие. Параллельно были уточнены некоторые формулировки - в этом следует видеть главную пользу от проведенных рассуждений.
Одновременно хорошо высветилось физическое содержание ансамбля простых явлений, или так называемой элементарной частицы материи. Оказалось, что элементарная частица далеко не элементарна: она состоит из большого множества порций (квантов) веществ различного сорта, которые связаны между собой силовым взаимодействием. Этим и объясняются все известные экзотические свойства частиц, не находившие ранее объяснения. Например, данная частица в зависимости от условий может по-разному распадаться на другие частицы, которые, в свою очередь, не являются более элементарными, нежели исходная; при этом исходная частица явно не состоит из частиц, на которые распадается, и т.д. [18, с.56, 434; 19; 21, с.35, 231].
Всю эту экзотику легко понять, если элементарными считать не частицы, а порции веществ, из которых они составлены. Тогда становится ясно, что данную частицу - гроздь квантов - можно разорвать разными способами, при этом ни один из осколков не будет более элементарным, чем другие или даже частица в целом, ибо частица не состоит из осколков, которые внутри ансамбля имели бы вид самостоятельных образований, но все они - и частица и осколки - на равных основаниях построены из многих элементарных порций различных веществ [ТРП, стр.89-90].
Глава VII. Первое начало ОТ.
1. Вывод основного уравнения ОТ для ансамбля простых явлений.
Мы теперь располагаем экстенсорами ? (см. соотношение (27)), играющими роль аргумента N1 в уравнении (14). Этого вполне достаточно, чтобы написать основное уравнение ОТ применительно к ансамблю простых явлений и определить все остальные величины, входящие в уравнения (14) и (15), в частности найти неизвестную меру N4 , обозначенную нами через U (см. выражение (29)). Благодаря этому мы, наконец, сформулируем наиболее общие, универсальные и достоверные количественные принципы, или начала, которые обнаруживаются на первом - начальном - этапе эволюции вещества и его поведения. Таким образом, будет замкнута цепочка дедуктивных рассуждений (2) и завершено построение обещанного выше общего метода дедукции, который берет свое начало от весьма общих философских концепций и затем в ходе рассуждений опускается до уровня числового выражения свойств конкретных явлений.
Мы убедимся, что основное уравнение (14), написанное для ансамбля простых явлений, представляет собой не что иное, как первое начало ОТ. Дальнейшая расшифровка характеристик и связей, содержащихся в первом начале, приведет к формулировке остальных шести начал. На этом завершится построение общего метода дедукции. Разработанный таким способом аппарат ОТ будет использован для изучения отдельных явлений эволюционного ряда (24).
Основное уравнение ОТ применительно к ансамблю простых явлений получается из соотношений (14), (27) и (29). Имеем
U = F(E1 ; E2 ; ... ; Ei) (30)
Мера количества поведения вещества ансамбля U есть однозначная функция всех мер ? количества вещества; число веществ различного сорта, из которых построен ансамбль, равно l . Как уже отмечалось, нам пока известно семь таких разнородных веществ. Вида функции F мы не знаем.
Абсолютные значения многих характеристик явления обычно найти труднее, чем изменения этих характеристик. Поэтому уравнение (30) надо преобразовать таким образом, чтобы в него входили только изменения (разности) соответствующих величин. Для этого достаточно продифференцировать выражение (30).