Чтение онлайн

на главную - закладки

Жанры

Ткань космоса. Пространство, время и текстура реальности
Шрифт:

Рис. 14.4.( а) Данные по реликтовому излучению, собранные спутником COBE. Это излучение стало беспрепятственно пронизывать пространство спустя примерно 300 000 лет после Большого взрыва, так что на картинке отражены мельчайшие температурные вариации, существовавшие во Вселенной примерно 14 млрд лет тому назад. ( б) Более точные данные, собранные спутником WMAP

Наплыв точных данных сузил поле космологических предположений, среди которых ведущее место, несомненно, занимает инфляционная модель.

Но, как мы упоминали в главе 10, инфляционная теория является не единственным кандидатом. Теоретики предложили множестворазличных версий (старая инфляция, новая инфляция, тёплая инфляция, гибридная инфляция, гиперинфляция, вспомогательная инфляция, вечная инфляция, расширенная инфляция, хаотическая инфляция, двойная инфляция, маломасштабная инфляция, гипернатуральная инфляция — и это ещё не всё), каждая из которых характеризуется кратким периодом быстрого расширения, но все они разнятся в деталях (количеством полей, формой их потенциальной энергии и т. д.). Эти различия ведут к немного разным предсказаниям свойств реликтового излучения (различные поля с различными энергиями испытывают немного разные квантовые флуктуации). Сравнение с данными спутников WMAP и «Planck» должно отсеять множество предположений, значительно улучшив наше понимание.

На самом деле эти данные могут ещё больше сузить поле предложений. Хотя квантовые флуктуации, растянутые инфляционным расширением, дают убедительное объяснение наблюдаемым температурным вариациям, но у инфляционной модели есть достойный соперник. Циклическая космологическая модель Стейнхардта и Тьюрока, описанная в главе 13, предлагает альтернативное объяснение. По мере того как две 3-браны циклической модели медленно направляются друг к другу, квантовые флуктуации вынуждают различные части бран приближаться с разной скоростью. Когда браны наконец-то сталкиваются приблизительно триллион лет спустя, то различные области бран соприкасаются немного в разные моменты времени, примерно как при соединении двух кусков шершавой наждачной бумаги. Крохотные отклонения от совершенно однородного соприкосновения порождают небольшие отклонения от совершенно однородной эволюции на каждой бране. Поскольку по предположению одна из этих бран является нашим трёхмерным пространством, то эти отклонения от однородности мы и должны обнаружить. Стейнхардт, Тьюрок и их сторонники заявили, что эти неоднородности порождают температурные отклонения той же формы, что и в инфляционной модели, и, следовательно, при сопоставлении с имеющимися сейчас данными циклическая модель даёт столь же жизнеспособное объяснение данным наблюдений.

Однако более точные данные, которые будут получены в следующее десятилетие, возможно, отсеют одну из соперничающих моделей. В инфляционной модели не только квантовые флуктуации растягиваются инфлатонным полем при экспоненциальном расширении, но в результате этого интенсивного растяжения генерируется также и мельчайшая квантовая рябь ткани пространства. Поскольку рябь пространства есть не что иное, как гравитационные волны (как в нашем недавнем обсуждении LIGO), то инфляционная модель предсказывает порождение гравитационных волн в самые ранние моменты Вселенной. {191} Эти волны часто называют реликтовыми гравитационными волнами, чтобы отличать их от волн, которые были относительно недавно сгенерированы в результате крупных астрофизических событий. В циклической же модели, наоборот, отклонение от совершенной однородности происходит медленно, в течение почти безмерного промежутка времени, поскольку у бран уходит триллион лет на медленное приближение друг к другу для следующего столкновения. Отсутствие резкого и сильного изменения геометрии бран и геометрии пространства означает, что пространственная рябь негенерируется, так что в циклической модели реликтовые гравитационные волны отсутствуют. Таким образом, если реликтовые гравитационные волны будут обнаружены, то это обернётся ещё одним триумфом инфляционной модели и окончательно перечеркнёт циклическую теорию.

Вряд ли чувствительности LIGO хватит на то, чтобы обнаружить гравитационные волны, предсказанные инфляционной моделью, но, возможно, их существование будет косвенно подтверждено данными «Planck» или данными другого эксперимента, названного CMBPol (Cosmic Microwave Background Polarization — космический эксперимент для изучения поляризации реликтового излучения), — этот эксперимент сейчас планируется. «Planck» и, в особенности, CMBPol не будут сосредоточены исключительно на температурных вариациях реликтового излучения; они также будут измерять поляризацию— среднее направление спинов обнаруживаемых фотонов реликтового излучения. Путём сложных рассуждений,

которые мы здесь пропускаем, можно показать, что гравитационные волны, порождённые Большим взрывом, должны оставить особый отпечаток на поляризации реликтового излучения, и, возможно, этот отпечаток достаточно силён, чтобы его можно было измерить.

Так что в предстоящее десятилетие у нас появится возможность определить, был ли Большой взрыв на самом деле соударением и является ли наша Вселенная на самом деле 3-браной. В золотую эру космологии некоторые из этих самых сумасшедших идей могут быть действительно проверены.

Тёмная материя, тёмная энергия и будущее Вселенной

В главе 10 мы познакомились с вескими теоретическими и наблюдательными свидетельствами того, что только 5% массы Вселенной составляет известная нам материя — протоны и нейтроны (на долю электронов приходится менее 0,05% общей массы обычной материи), тогда как 25% массы даёт тёмная материя, а 70% — тёмная энергия. Но всё ещё остаётся значительная неопределённость в том, из чего же состоит тёмная материя. Естественно предположить, что тёмная материя тоже состоит из протонов и нейтронов, которые каким-то образом избежали совместного сцепления с последующим образованием звёзд, излучающих свет. Но другой теоретический взгляд оставляет этой гипотезе очень мало шансов.

Благодаря детальным наблюдениям астрономы точно знают об относительной средней распространённости лёгких элементов (водорода, гелия, дейтерия и лития), рассеянных по всему космосу. С высокой степенью точности эта распространённость согласуется с теоретическими расчётами процессов, в ходе которых ядра этих элементов были предположительно синтезированы в первые минуты Вселенной. Эта согласованность является одним из величайших успехов современной теоретической космологии. Однако в этих расчётах предполагается, что основная часть тёмной материи состоит неиз протонов и нейтронов; если главными составляющими на космологических масштабах были бы протоны и нейтроны, то результаты расчётов не согласовывались бы с наблюдаемыми данными.

Но если не протоны и нейтроны, тогда что же составляет тёмную материю? Сегодня никто этого не знает, но в предположениях нет недостатка. Имена кандидатов пробегают весь ряд от аксионовдо зино, и тот, кто найдёт ответ, несомненно, будет приглашён в Стокгольм. То обстоятельство, что ещё никто не обнаружил частицы тёмной материи, накладывает существенное ограничение на любое предположение. Дело в том, что тёмная материя находится не только в глубоком космосе; она распределена по всей Вселенной и поэтому присутствует и здесь, на Земле. Согласно многочисленным предположениям прямо сейчас миллиарды частиц тёмной материи ежесекундно пронизывают ваше тело, так как в ряду перспективных кандидатов остаются только те частицы, которые могут проходить через материю, не оставляя заметного следа.

Одним из оставшихся кандидатов является нейтрино. По оценкам, плотность реликтовой распространённости нейтрино с момента Большого взрыва составляет 55 млн/м 3, так что если масса одного из трёх видов нейтрино дотягивает до сотой от миллионной доли (10 – 8) массы протона, то нейтрино могут обеспечить надлежащую массу тёмной материи. Хотя в недавних экспериментах были получены веские свидетельства того, что нейтрино действительно имеют массу, но согласно современным данным нейтрино слишком легки, чтобы обеспечить должную массу тёмной материи — нейтрино примерно в сто раз легче, чем нужно.

Другими перспективными кандидатами являются суперсимметричные частицы, особенно, фотино, зинои хиггсино(партнёры фотона, Z-частицы и частицы Хиггса соответственно). Они самые «нелюдимые» из всех суперсимметричных частиц — они могли бы невозмутимо проходить через всю Землю без малейшего влияния на своё движение — и поэтому могли бы легко избегать своего обнаружения. {192} Из расчётов количества этих частиц, порождённых Большим взрывом и доживших до настоящих дней, следует, что их масса должна от 100 до 1000 раз превышать массу протона, чтобы набрать должную массу тёмной материи. Это интригующий результат, поскольку в различных моделях суперсимметричных частиц, как и в теории суперструн, получена та же оценка массы без какой-либо оглядки на тёмную материю и космологические процессы. Это было бы загадочным и совершенно необъяснимым совпадением, если, конечно, тёмная материя действительно не состоит из суперсимметричных частиц. Таким образом, поиск суперсимметричных частиц в современных и строящихся ускорителях частиц может также считаться поиском наиболее подходящих кандидатов на роль тёмной материи.

Поделиться:
Популярные книги

Назад в СССР: 1986 Книга 5

Гаусс Максим
5. Спасти ЧАЭС
Фантастика:
попаданцы
альтернативная история
5.75
рейтинг книги
Назад в СССР: 1986 Книга 5

Неудержимый. Книга III

Боярский Андрей
3. Неудержимый
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Неудержимый. Книга III

Мастер 3

Чащин Валерий
3. Мастер
Фантастика:
героическая фантастика
попаданцы
аниме
5.00
рейтинг книги
Мастер 3

Конструктор

Семин Никита
1. Переломный век
Фантастика:
попаданцы
альтернативная история
4.50
рейтинг книги
Конструктор

Наследник Четырех

Вяч Павел
5. Игра топа
Фантастика:
героическая фантастика
рпг
6.75
рейтинг книги
Наследник Четырех

Чехов. Книга 2

Гоблин (MeXXanik)
2. Адвокат Чехов
Фантастика:
фэнтези
альтернативная история
аниме
5.00
рейтинг книги
Чехов. Книга 2

Легат

Прокофьев Роман Юрьевич
6. Стеллар
Фантастика:
боевая фантастика
рпг
6.73
рейтинг книги
Легат

Земная жена на экспорт

Шах Ольга
Любовные романы:
любовно-фантастические романы
5.57
рейтинг книги
Земная жена на экспорт

Идеальный мир для Лекаря 11

Сапфир Олег
11. Лекарь
Фантастика:
фэнтези
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 11

Столичный доктор. Том II

Вязовский Алексей
2. Столичный доктор
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Столичный доктор. Том II

Столичный доктор. Том III

Вязовский Алексей
3. Столичный доктор
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Столичный доктор. Том III

Пропала, или Как влюбить в себя жену

Юнина Наталья
2. Исцели меня
Любовные романы:
современные любовные романы
6.70
рейтинг книги
Пропала, или Как влюбить в себя жену

Нефилим

Демиров Леонид
4. Мания крафта
Фантастика:
фэнтези
боевая фантастика
рпг
7.64
рейтинг книги
Нефилим

Бывший муж

Рузанова Ольга
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Бывший муж