Ткань космоса. Пространство, время и текстура реальности
Шрифт:
«Малдер, — цедит Скалли в трубку телефона, — это тебенужен отдых. Это же глупо. Очевидно, каждый шарик запрограммирован на свечение красным или синим светом, когда открывается дверца его коробочки. И кто-то послал нам одинаково запрограммированные коробочки, так что мы обнаруживаем один и тот же цвет, когда открываем коробочки с одинаковыми номерами».
«Ну уж нет, Скалли, в письме говорится, что каждый шарик инопланетян случайновыбирает между синим и красным цветом в момент открытия крышки его коробочки, а нето, что каждый шарик заранее запрограммирован на выбор того или другого цвета».
«Малдер, — вздыхает Скалли, — моё объяснение безупречно и отвечает всем данным. Чего ты ещё хочешь? И взгляни сюда, в самый конец письма. Здесь самое смешное. “Инопланетяне” дают примечание мелким шрифтом, что шарик начнёт светиться не только при открытии дверцы его коробочки, но и в результате любого действия, направленного
Может показаться, что Скалли заняла обоснованную научную позицию. Но дело вот в чём. Физики, занимающиеся квантовой механикой — учёные, а не инопланетяне, — в течение примерно восьмидесяти лет делали заявления, что Вселенная устроена подобно тому, как описано в письме. И трудность в том, что сейчас уже есть веские доказательства, что именно точка зрения Малдера, а не Скалли, поддерживается полученными научными данными. Например, согласно квантовой механике частица может находится в состоянии неопределённости по отношению к значению той или иной своей характеристики (подобно тому как перед открытием крышки шарик инопланетян находится в состоянии неопределённости, каким цветом ему вспыхнуть), и только когда частица увидена (измерена), она случайным образомвыбирает значение этой характеристики. Как будто этой странности ещё недостаточно, квантовая механика также предсказывает, что между частицами могут существовать связи, сходные со связями между шариками инопланетян. Две частицы могут быть так переплетены квантовыми эффектами, что случайный выбор значения той или иной характеристики оказывается скоррелированным: подобно тому как каждый из шариков инопланетян случайно выбирал между красным и синим, и всё же каким-то непостижимым образом цвета, выбранные шариками в коробочках с одинаковыми номерами, оказывались скоррелированными (оба шарика вспыхивают красным или синим светом), так и значения одной и той же характеристики, выбранные случайно двумя частицами, могут идеально согласовываться друг с другом, даже если эти частицы удалены друг от друга на большое расстояние в пространстве. Грубо говоря, квантовая механика говорит о том, что даже если две частицы далеко разнесены в пространстве, то одна частица всё равно будет вторить другой.
А вот конкретный пример для тех, кто носит солнечные очки: квантовая механика предсказывает, что с вероятностью 50:50 отдельный фотон (вроде того, что отразился от поверхности озера или асфальтированного шоссе) проникнет сквозь антибликовые поляризованные линзы ваших очков: когда фотон достигнет стекла, он случайным образом «выберет», отразиться ему или пройти сквозь линзы. Поразительно то, что этот фотон может иметь партнёра-фотона, который мчится в противоположном направлении на расстоянии многих километров от вас и, всё же, имея тот же шанс 50:50 пройти сквозь поляризованные линзы других солнечных очков, он каким-то образом повторит всё, что бы ни сделал первый фотон. Несмотря на то что результат определяется случайным образом, а сами фотоны разделяет громадное расстояние, если первый фотон пройдёт сквозь линзы очков, то обязательно пройдёт и второй.Вот такая нелокальность предсказывается квантовой механикой.
Эйнштейн, который никогда не был большим поклонником квантовой механики, был несклонен принимать, что Вселенная подчиняется таким странным правилам. Он отстаивал более привычные объяснения, которые не предполагают, что частицы случайно выбирают свои характеристики в момент измерения. Вместо этого Эйнштейн заявлял, что если две далеко разнесённые в пространстве частицы разделяют общие характеристики, то этот факт ещё не является доказательством существования некой таинственной квантовой связи, мгновенно коррелирующей характеристики этих частиц. Скорее, подобно предположению Скалли о том, что шарики не случайно выбирают между красным и синим, а просто запрограммированы на свечение вполне определённым цветом во время наблюдения, Эйнштейн утверждал, что частицы не случайно выбирают значения своих характеристик, а как-то «запрограммированы» показывать заранее определённое значение в момент измерения. Эйнштейн считал, что фотоны были наделены одинаковыми свойствами в момент испускания и дело вовсе не в том, что они подвержены какому-то странному квантовому запутыванию на больших расстояниях.
В течение пятидесяти лет оставался открытым вопрос, кто же прав — Эйнштейн или сторонники квантовой механики; их спор был очень похож на диалог Скалли и Малдера: любая попытка опровергнуть предполагаемые странные квантово-механические связи и отстоять более привычный эйнштейновский взгляд наталкивалась на заявление, что сами эксперименты неизбежно исказят рассматриваемые характеристики. Всё это изменилось в 60-е гг. прошлого века. С изумительной проницательностью ирландский физик Джон Белл показал, что этот спор может быть решён экспериментально, что и было сделано в 1980-е гг. Результаты экспериментов недвусмысленно показали, что Эйнштейн ошибался и на самом деле могут существовать странные, таинственные и «кошмарные» квантовые связи между вещами здесь и вещами там. {44}
Мотивировки, стоящие за этим выводом, столь тонки, что физикам потребовалось более тридцати лет, прежде чем полностью их принять. Но, разобравшись с существенными особенностями квантовой механики, мы увидим, что всё не так сложно.
Посылая волны
Если посветить лазерной указкой на кусочек чёрной засвеченной 35-миллиметровой плёнки, с которой предварительно снята эмульсия вдоль двух очень близких друг к другу и узких линий, то можно непосредственно убедиться в том, что свет является волной. Если вы никогда не делали этого, стоит попробовать (вместо плёнки можно взять, например, проволочную сетку от кофеварки). На экране, распложенном за плёнкой, вы увидите характерную картину, состоящую из светлых и тёмных полос, как на рис. 4.1, и объяснение этой картинки связано с основными свойствами волн. Волны на воде видны лучше, поэтому начнём с волн на поверхности спокойного озера и потом применим наше понимание к свету.
Рис. 4.1.Свет лазера, проходящий через две щели в чёрной плёнке, даёт интерференционную картину, говорящую о том, что свет является волной
Волны, расходящиеся от брошенного в озеро камня, возмущают его плоскую поверхность, создавая области с чуть более высоким и чуть более низким уровнем воды. Самая высокая часть волны называется гребнем, а самая низкая — впадиной. Легко подметить, что волна характеризуется периодической сменой гребней и впадин. Если встречаются две волны (если, например, мы с вами бросаем камни в озеро недалеко друг от друга), то при их наложении возникает важное явление, называемое интерференцией(см. рис. 4.2 а). Если в каком-то месте озера встречаются гребни волн, то, складываясь, они усиливают друг друга, из-за чего уровень воды в этом месте становится ещё выше. Аналогично, когда накладываются друг на друга впадины волн, они также усиливают друг друга, из-за чего уровень воды в месте пересечения двух впадин ещё больше понижается, становясь равным сумме глубин двух впадин. А вот если гребень одной волны встречается с впадиной другой, то они гасят друг друга, причём гашение будет полным, если высота гребня первой волны совпадает с глубиной впадины второй волны, и тогда уровень поверхности воды в этом месте вообще не изменится.
Рис. 4.2.( а) При наложении волн на поверхности воды возникает интерфереционная картина. ( б) При наложении световых волн тоже возникает интерфереционная картина
На основе того же принципа можно объяснить картину, возникающую при прохождении света лазера через две щели. Свет является электромагнитной волной; проходя через две щели, он разделяется на две волны, идущие к экрану. Волны света интерферируют друг с другом подобно волнам на поверхности воды. Если в какой-то точке экрана пересекаются два гребня или две впадины световых волн, то эта точка выглядит яркой; а вот если гребень одной волны пересекается с впадиной другой, то точка экрана будет тёмной. Это и показано на рис. 4.2 б.
Разумеется, волны могут накладываться друг на друга не только своими гребнями и впадинами, но возможны и различные промежуточные случаи. Математический анализ явления показывает, что должна возникать череда тёмных и светлых полос, показанная на рис. 4.1. Это служит явным признаком того, что свет является волной, — очень важный вывод, поскольку вопрос о природе света горячо обсуждался ещё со времён Ньютона, который считал, что свет является не волной, а потоком частиц (мы поговорим об этом подробнее в своё время). Более того, этот анализ равным образом применим к любымвидам волн (будь то световые волны, волны на поверхности воды, звуковые волны или какие угодно другие), и поэтому интерференционные картины служат своеобразной «лакмусовой бумажкой»: будьте уверены, что имеете дело с волной, если на экране, расположенном за двумя щелями с правильно подобранным расстоянием между ними (определяемым расстоянием между гребнями и впадинами волны), вы получаете картину, подобную изображённой на рис. 4.1 (с яркими и тёмными областями, представляющими высокую и низкую интенсивности волн).