Ткань космоса. Пространство, время и текстура реальности
Шрифт:
Акт наблюдения связывает эту необычную квантовую реальность с повседневным классическим опытом. Наблюдения, которые мы проводим сегодня, вынуждают одну из нитей квантовой истории выделиться в нашем изложении прошлого. В этом смысле, хотя квантовая эволюция от прошлого к настоящему не подвергается влиянию чего-либо, что мы делаем сегодня, история, которую мы называем прошлым, может нести на себе следы сегодняшних действий. Если мы устанавливаем детекторы фотонов вдоль двух путей, по которым свет следует к экрану, тогда наш рассказ о прошлом будет включать описание того, какой путь выбрал каждый фотон; устанавливая детекторы фотонов, мы обеспечиваем, что информация выбора пути является существенной и определённой частью нашей истории. Но если мы не устанавливаем детекторы фотонов, описание прошлого будет неизбежно другим. Без детекторов фотонов невозможно сказать что-либо о том, каким путём следует фотон; без детекторов фотонов подробности выбора пути фундаментально недоступны. Оба образа действий (с детектированием путей и без) допустимы. Оба интересны. Они просто описывают разные ситуации.
Наблюдение сегодня может, следовательно, помочь завершить историю, которую мы рассказываем о процессе, который начался вчера, позавчера или вообще
Стирая прошлое
Нужно отметить, что в этих экспериментах прошлое никоим образом не изменяется сегодняшними действиями и что никакая хитрая модификация экспериментов не достигнет этой цели. Тогда возникает вопрос: если вы не можете изменить нечто, что уже произошло, можете ли вы сделать кое-что другое, а именно, стереть влияниепрошлого на настоящее? В той или иной степени временами такая фантазия может быть реализована. Игрок в бейсбол, который после двух аутов в конце девятого иннинга [45] упускает простой мяч, позволяя команде противника завершить розыгрыш очка в одну пробежку, может исправить влияние этой ошибки впечатляющим захватом трудного мяча, посланного следующим отбивающим игроком. И конечно, такой пример ни в малейшей степени не загадочен. Когда событие в прошлом выглядит определённо предотвращающим наступление другого события в будущем (как пропущенный летящий мяч определённо предотвращает безупречную игру), мы могли бы подумать, что здесь что-то не так, только в том случае, если бы нам потом сказали, что предотвращённое событие на самом деле произошло. Квантовый ластик, впервые предложенный в 1982 г. Марлен Скалли и Каем Дрюлем, намекает на этот вид странностей в квантовой механике.
45
Игра в бейсбол состоит из девяти периодов — иннингов, каждый иннинг завершается после трёх выбываний игроков (аутов). Детальное понимание правил игры не особенно существенно для дальнейшего. Суть примера заключается в том, что сделанная в прошлом ошибка иногда может быть исправлена последующими действиями. (Прим. ред.)
Простейшая версия эксперимента с квантовым ластиком использует двухщелевую установку, модифицированную следующим образом. Прибор, фиксирующий прохождение фотона, располагается перед каждой щелью; он помечает каждый проходящий фотон так, что когда фотон исследуется позже, вы можете сказать, через какую щель он прошёл. Вопрос о том, как вы можете обеспечить маркировку фотона — как вы можете сделать эквивалент нанесения «Л» на фотон, который проходит через левую щель и «П» на фотон, который проходит через правую щель, — хороший вопрос, но детали не особенно важны. Грубо говоря, процесс осуществляется с использованием прибора, который позволяет фотону свободно пройти через щель, но заставляет его спин сориентироваться определённым образом. Если приборы у левой и правой щели ориентируют спины фотонов каждый своим способом, то более совершенный детекторный экран, который не только регистрирует точку в месте попадания фотона, но также и содержит запись об ориентации его спина, будет показывать, через какую щель пролетел данный фотон на своём пути к детектору.
Когда проводится такой двухщелевой эксперимент с маркировкой, фотоны не дают интерференционную картину, как это показано на рис. 7.4 а. Теперь уже объяснение должно быть привычным: новый маркирующий прибор позволяет собрать информацию о выборе пути, а информация о выборе пути означает выбор той или иной истории; результаты показывают, что любой данный фотон проходит либо через левую щель, либо через правую щель. А без комбинации левощелевых и правощелевых траекторий нет перекрытия вероятностных волн, так что интерференционная картина не создаётся.
Теперь идея Скалли и Дрюля. Что если сразу после падения фотона на детекторный экран вы уничтожите возможность определения, через какую щель он прошёл, путём разрушения отметки, зафиксированной маркирующим прибором? Без возможности, даже в принципе, выделить информацию о выборе пути из детектируемого фотона, когда оба класса историй опять возвращаются в игру, заставляя снова появляться интерференционную картину. Да, этот вид «отмены» прошлого впечатляет куда больше, чем эффектный захват бейсболиста в конце девятого иннинга. Когда маркирующий прибор включён, фотон послушно ведёт себя как частица, проходя через левую щель иличерез правую щель. Если как-нибудь сразу перед его попаданием в экран мы разрушим метку выбора пути, отмечающую его движение, то кажется, слишком поздно позволять формироваться интерференционной картине. Для интерференции нам надо, чтобы фотон вёл себя как волна. Он должен проходить через обе щели, так чтобы он смог перемешиваться сам с собой на пути к экрану детектора. Но наша исходная маркировка фотона, кажется, должна гарантировать, что он ведёт себя как частица и проходит либо через левую, либо через правую щель, предотвращая появление интерференционной картины.
В эксперименте, проведённом Раймондом Чиао, Полом Квиатом и Эфраимом Штайнбергом, установка была такой, как схематично показано на рис. 7.4, с новым устройством для стирания, поставленным прямо перед экраном детектора. Опять детали не существенны, но коротко уточним, что ластик работает так, что независимо от того, прошёл ли фотон через левую или через правую щель, его спин указывает на одно и то же фиксированное направление. Последующая проверка его спина, следовательно, не даёт информации о том, через какую щель он прошёл, так что метка выбора пути стёрта. Замечательно, что фотоны, обнаруженные на экране после этого стирания, дают интерференционную картину. Когда ластик установлен прямо перед детекторным экраном, он отменяет — стирает — влияние маркировки фотонов, когда они проходили через щели. Как и в эксперименте с отложенным выбором, в принципе, такой вид стирания мог произойти через миллиарды лет после того влияния, которое он нарушил, фактически отменив прошлое, отменив даже древнее прошлое.
Рис. 7.4.В
Как можно придать этому смысл? Будем помнить, что результаты полностью согласуются с теоретическими предсказаниями квантовой механики. Скалли и Дрюль предложили этот эксперимент, потому что квантово-механические вычисления убедили их, что это будет работать. Так и произошло. Как и обычно с квантовой механикой, головоломка не противопоставила теорию и эксперимент. Она противопоставила теорию, согласующуюся с экспериментом, нашим интуитивным представлениям о времени и реальности. Чтобы снять напряжение, отметим, что если бы вы поставили детекторыфотонов перед каждой щелью, то показания детекторов точно бы определили, прошёл ли фотон через левую щель или через правую щель, и тогда не будет способа стереть такую информацию — тогда не будет и способа снова получить интерференционную картину. Но маркирующие приборы тем и отличаются, что они обеспечивают только потенциальную возможность определения информации о выборе пути — а потенциальные возможности являются как раз такими вещами, которые могут быть разрушены. Маркирующий прибор модифицирует прохождение фотона таким образом, что, грубо говоря, он всё ещё идёт обоими путями, но левая часть его волны вероятности размыта относительно правой или правая часть его волны вероятности размыта относительно левой. Из-за этого упорядоченная последовательность пиков и впадин, которая обычно появляется от каждой щели, — как на рис. 4.2 б— также размывается, так что интерференционная картина на детекторном экране не формируется. Хотя решающим для понимания является то, что обе волны, и левая, и правая, всё ещё существуют. Ластик работает, потому что он снова фокусирует волны. Подобно паре зеркал он компенсирует размытие, возвращая обе волны к резкому фокусу и позволяя им снова создать интерференционную картину. Как если бы после того, как маркирующие устройства выполнили свою задачу, интерференционная картина исчезла из вида, но терпеливо находилась бы в ожидании, пока кто-нибудь или что-нибудь не воскресило её.
Это объяснение могло бы сделать квантовый ластик немного менее удивительным, но тут имеется финал — ошеломляющий вариант эксперимента с квантовым ластиком, который ещё более сотрясает привычные представления о пространстве и времени.
Формируя прошлое [46]
Этот эксперимент, квантовый ластик с отложенным выбором, также был предложен Скалли и Дрюлем. Он начинается с эксперимента со светоделителем, показанным на рис. 7.1, изменённым путём введения двух так называемых даун-конверторов [47] , по одному на каждый путь. Даун-конвертор — это прибор, который получает один фотон на входе и производит два фотона на выходе, каждый с половиной энергии («даун-преобразование») от исходного. Один из двух фотонов (так называемый сигнальныйфотон) направляется вдоль пути, по которому к детекторному экрану следовал исходный фотон. Другой фотон, произведённый даун-конвертором (именуемый холостымфотоном), посылается в совершенно другом направлении, как показано на рис. 7.5 а. В каждом эксперименте мы можем определить, какой путь к экрану выбрал сигнальный фотон, путём наблюдения, который из даун-конверторов испустил холостой фотон-партнёр. И снова возможность получить информацию о выборе пути сигнального фотона — даже хотя она является полностью косвенной, поскольку мы не взаимодействуем ни с одним сигнальным фотоном, — вызывает предотвращение возникновения интерференционной картины.
46
Если этот раздел окажется трудным, вы можете спокойно перейти к следующему разделу, последовательность изложения не потеряется. Но я призываю вас разобраться с ним, так как результаты в полном смысле слова изумительны.
47
Англоязычный термин down-conversionне имеет общепринятого русского перевода, и иногда переводится как параметрическое преобразование частоты внизили параметрическое рассеяние, но последнее время всё чаще используется фонетическая калька даун-конверсия. Мы следуем последнему варианту. (Прим. ред.)
Рис. 7.5.( а) Эксперимент со светоделителем луча, дополненный даун-конверторами, не даёт интерференционной картины, поскольку холостые фотоны сообщают информацию выбора пути. ( б) Если холостые фотоны не детектируются непосредственно, а вместо этого посылаются через изображённый лабиринт, тогда из результатов эксперимента может быть выделена интерференционная картина. Холостые фотоны, которые регистрируются детекторами 2 или 3, не дают информации о выборе пути и, следовательно, их сигнальные фотоны дают интерференционную картину