Ткань космоса. Пространство, время и текстура реальности
Шрифт:
Теперь представьте, что несколько проказников решили немного изменить положение дел. Они соединили толстыми резиновыми лентами противоположные стены комнаты, движущиеся наружу. Резиновые ленты оказывают направленное внутрь, отрицательное давление на стены комнаты, которое действует в точности противоположно направленному наружу положительному давлению, которое производят дети; вместо того чтобы переводить энергию в расширение комнаты, отрицательное давление резиновых лент «всасывает» энергию расширения. Когда комната расширяется, резиновые ленты натягиваются сильнее, что означает, что онизаключают в себе возрастающее количество энергии.
Конечно, на самом деле мы интересуемся не расширяющимися комнатами, но расширяющейся Вселенной. И наши теории говорят нам, что пространство заполнено не толпами детей и множеством резиновых лент, а, в зависимости от космологической эпохи, однородным океаном поля инфлатона или горячими обычными частицами (электронами, фотонами, протонами и т. п.). Тем не менее одно простое наблюдение позволяет применить к космологии выводы, которые мы получили для комнаты. Точно так же, как быстро движущиеся дети производят работу против
Таким образом, точно так же, как полная энергия, заключающаяся в детях, падает вследствие её постоянной перекачки в энергию стен при расширении комнаты, полная энергия, переносимая обыкновенными частицами материи и излучения, падает вследствие её постоянного перекачивания в гравитацию, когда расширяется Вселенная. Более того, мы видим, что точно так же, как изготовленные проказниками резиновые ленты создают отрицательное давление внутри расширяющейся комнаты, однородное поле инфлатона создаёт отрицательное давление внутри расширяющейся Вселенной. Поэтому точно так же, как полная энергия, содержащаяся в резиновых лентах, возрастает при расширении комнаты, поскольку она отбирает энергию у его стен, полная энергия, заключённая в поле инфлатона, возрастает, когда Вселенная расширяется, поскольку оно извлекает энергию из гравитации. [69]
69
Аналогия с резиновыми лентами хотя и полезна, но неточна. Направленное внутрь отрицательное давление, создаваемое резиновыми лентами, затрудняет расширение комнаты, тогда как отрицательное давление инфлатона заставляет расширяться пространство. Это важное различие иллюстрирует уточнение, подчёркнутое в разделе «Эйнштейн и отталкивающая гравитация» [аб. 9]: в космологии однородное отрицательное давление само по себе вовсе не вызывает расширение (к возникновению сил приводит только разность давлений, так что однородное давление, как положительное, так и отрицательное, сил не вызывает). Дело в том, что давление, подобно массе, вызывает гравитационную силу. А отрицательное давление вызывает отталкивающую гравитационную силу, которая ведёт к расширению пространства. Это не влияет на наши заключения.
Суммируем: когда Вселенная расширяется, материя и излучение теряют энергию, отдавая её гравитации, в то время как поле инфлатона извлекает энергию из гравитации. [70]
Жизненно важное значение наблюдений становится ясно, когда мы пытаемся объяснить происхождение материи и излучения, из которых состоят галактики, звёзды и всё остальное, чем населён космос. В стандартной теории Большого взрыва материя/энергия, заключённая в материи и излучении, постоянно уменьшается при расширении Вселенной, так что материя/энергия в ранней Вселенной намного превышала то, что мы видим сегодня. Следовательно, вместо того чтобы предложить объяснение, откуда взялась вся материя/энергия, в настоящее время населяющая Вселенную, стандартная модель Большого взрыва ведёт бесконечную изнуряющую битву: чем дальше в прошлое заглядывает теория, тем больше материи/энергии она должна как-то объяснить.
70
Когда Вселенная расширяется, потеря энергии фотонами может непосредственно наблюдаться вследствие увеличения их длин волн (они подвергаются красному смещению), и чем больше длина волны фотона, тем меньшей энергией он обладает. Фотоны микроволнового фона подвергались такому красному смещению около 14 млрд лет, что объясняет их большие — микроволновые — длины волн и их низкую температуру. Аналогично, материя теряет свою кинетическую энергию (энергию движения частиц), но полная энергия, связанная в массе частиц (их энергия покоя— энергия, эквивалентная их массе, когда они покоятся), остаётся постоянной.
Однако в инфляционной космологии верно почти противоположное. Напомним: инфляционная теория утверждает, что материя и излучение возникли в конце инфляционной фазы, когда поле инфлатона выделило заключающуюся в нём энергию, скатившись с возвышения на дно своей чаши потенциальной энергии. Следовательно, правильно поставленный вопрос будет звучать так: может ли теория объяснить содержание в поле инфлатона, в тот момент, когда инфляция подошла к концу, столь громадного количества материи/энергии, которое необходимо, чтобы породить всю материю и излучение, содержащиеся в современной Вселенной?
Ответ на этот вопрос таков: инфляция может легко это сделать, даже особо не утруждаясь. Как уже объяснялось, поле инфлатона является гравитационным паразитом — оно питается гравитацией, — так что полная энергия поля инфлатона возрастает, по мере того как пространство расширяется. Более точно, математика показывает, что плотность энергии поля инфлатона остаётся постоянной в течение фазы быстрого инфляционного расширения, откуда следует, что заключённая в нём полная энергия растёт прямо пропорционально объёму заполненного им пространства. В предыдущей главе мы видели, что размер Вселенной в ходе инфляции возрастает как минимум в 10 30раз, а это означает, что объём Вселенной возрастает по меньшей мере в (10 30) 3= 10 90раз. Соответственно, заключённая в поле инфлатона энергия возрастёт в то же гигантское число раз: когда инфляционная фаза подходит
Таким образом, в полной противоположности со стандартной теорией Большого взрыва, в которой полная материя/энергия ранней Вселенной была невыразимо огромной, инфляционная космология путём «разработки залежей» гравитации может произвести всю обыкновенную материю и излучение Вселенной из крохотного десятикилограммового кусочка заполненного инфлатоном пространства. Это ни в коем случае не отвечает на вопрос Лейбница о том, почему существует нечто вместо ничего, так как ещё необходимо объяснить, почему имелся инфлатон или даже само пространство, которое он занимал. Но то, что всё ещё требует объяснения, весит много меньше, чем моя собака Рокки, и это определённо совсем другая стартовая позиция по сравнению с той, что предусмотрена стандартной моделью Большого взрыва [71] .
71
Некоторые исследователи, включая Алана Гута и Эдди Фархи, изучали, можно ли гипотетически создать новую Вселенную в лаборатории путём синтеза кусочка поля инфлатона. Абстрагируясь от факта, что мы всё ещё не имеем прямого экспериментального доказательства того, что существует такая вещь, как поле инфлатона, отметим, что десять килограммов поля инфлатона нужно было бы втиснуть в ничтожный объём пространства размером около 10 – 26см, а потому плотность была бы гигантской — примерно в 10 67раз больше плотности атомных ядер, — а это находится за пределами того, что мы можем сделать сейчас или, вероятно, когда-либо.
Инфляция, гладкость и стрела времени
Может быть мой энтузиазм уже выдал мои пристрастия, но из всех успехов, которые наука достигла в наше время, достижения космологии наполняют меня наибольшим трепетом и смирением. Мне кажется, я никогда не утрачивал то возбуждение, которое я первый раз испытал много лет назад, когда впервые изучал основы общей теории относительности и понял, что из нашего крохотного уголка пространства-времени, применив теорию Эйнштейна, мы можем изучать эволюцию всего космоса. Теперь, несколько десятилетий спустя, технологический прогресс позволил подвергнуть эти некогда абстрактные предположения о поведении Вселенной в свои самые ранние моменты проверке наблюдениями, и теория на самом деле работает.
Напомним, однако, что помимо общей важности космологии для понимания пространства и времени, в главах 6 и 7 мы взялись за изучение ранней истории Вселенной со специальной целью: найти истоки стрелы времени. Вспомним из этих глав, что единственные убедительные рамки, которые мы нашли для объяснения стрелы времени, заключались в том, что ранняя Вселенная была чрезвычайно упорядоченной, т. е. имела экстремально низкую энтропию, что сделало возможным будущее, в котором энтропия всегда увеличивается. Точно так же, как страницы романа «Война и мир»невозможно было бы привести в состояние большего беспорядка, если бы они не были в некоторый момент аккуратно сложены, так и Вселенная тоже не обладала бы способностью становиться всё более разупорядоченной — молоко не могло бы разливаться, яйца не могли разбиваться, люди стареть — без того, чтобы она имела высокоупорядоченную конфигурацию в начале. Загадка, с которой мы столкнулись, заключается в объяснении, как могла возникнуть эта высокоупорядоченная низкоэнтропийная стартовая точка.
Инфляционная космология предлагает существенный прогресс в этом вопросе, но позвольте мне сначала более точно напомнить вам загадку на случай, если некоторые существенные детали ускользнули от вашего внимания.
Имеются убедительные свидетельства, что в ранней истории Вселенной материя была распределена по пространству однородно. Как правило, это соответствует высокоэнтропийной конфигурации — вроде молекул углекислого газа, разлетевшихся по всей комнате из бутылки колы, — и потому могло бы оказаться настолько банальным, что едва ли потребовало объяснения. Но когда существенна гравитация, как это имеет место при рассмотрении целой Вселенной, однородное распределение материи является редкой, низкоэнтропийной, высокоупорядоченной конфигурацией, поскольку гравитация заставляет материю собираться в отдельные сгустки. Аналогично, гладкое и однородное пространство также имеет очень низкую энтропию; оно является высокоупорядоченным по сравнению с пространством, характеризующимся безумно скачущей, неоднородной пространственной кривизной. (Точно так же, как для страниц романа «Война и мир»имеется много способов быть разупорядоченными, но только один способ быть упорядоченными, имеется много способов для пространства иметь разупорядоченную, неоднородную форму, но очень мало способов, в которых оно может быть упорядоченным, гладким и однородным.) Так что мы остаёмся с загадкой: почему ранняя Вселенная имела низкоэнтропийное (высокоупорядоченное) распределение материи вместо высокоэнтропийного (сильно разупорядоченного) неоднородного распределения материи, такого как популяция разнообразных чёрных дыр? И почему распределение кривизны по пространству было гладким, упорядоченным и однородным с экстремально высокой точностью, а не пронизанным различными гигантскими искажениями и замысловатыми искривлениями, вроде того, которое могло бы генерироваться чёрными дырами?