Чтение онлайн

на главную

Жанры

Том 9. Загадка Ферма. Трехвековой вызов математике
Шрифт:

Обложка первого английского издания «Начал» Евклида, датируемого 1570 годом.

* * *

ПИФАГОРОВЫ ТРОЙКИ

В «Началах» Евклида приводится общая формула для нахождения пифагоровых троек, то есть натуральных чисел, которые являются решениями уравнения а2 + Ь2 = с2. Для этого выбираются произвольные натуральные числа m и n, причем m > n. Затем рассчитывается

а = m2n2; = 2mn; с = m2 + n2.

Полученные

числа а, Ь, с удовлетворяют соотношению

а2 + Ь2 = (m2n2)2 + (2mn)2 = m4 — 2m2n2 + n4 + 4m2n2 = m4 + 2m2n2 + n4 = (m2 + n2)2 = с2,

следовательно, они образуют пифагорову тройку. Если мы выберем m и n так, чтобы они были взаимно простыми и только одно из них было четным, то по этой же формуле можно получить все примитивные пифагоровы тройки, то есть те, в которых а, b и с являются взаимно простыми. Отсюда следует, что существует бесконечное количество примитивных пифагоровых троек.

Для каждой тройки можно построить прямоугольный треугольник, длины сторон которого будут выражены целыми числами. Ферма доказал, что площадь таких треугольников никогда не может быть равна квадрату числа.

* * *

Слово «совершенные» больше связано с эстетикой, чем с математикой. Эти числа красивы не из-за каллиграфического написания, не потому, что их сложно найти и не из-за витиеватости определения. Вместо этого они обладают одним очень простым свойством.

Возьмем в качестве примера число 6. Его делители, то есть числа, на которые оно делится без остатка, — это 1, 2, 3 и 6. Удивительно, но 1 + 2 + 3 = 6, то есть сумма всех делителей, меньших 6, дает в сумме 6. Следующее совершенное число — 28. Его делители равны 1, 2, 4, 7, 14 и 28. Нетрудно видеть, что 1 + 2 + 4 + 7 + 14 = 28. Следующее совершенное число — 496. Его делители таковы: 1, 2, 4, 8, 16, 31, 62, 124, 248 и 496, и нетрудно показать, что 1 + 2 + 4 + 8 + 16 + 31 + 62 + 124 + 248 = 496. Следующее совершенное число — 8128, так как 1 + 2 + 4 + 8 + 16 + 32 + 64 + 127 + 254 + 508 + 1016 + 2032 + 4064 = 8128. Эти четыре совершенных числа были известны еще в Античности. Евклид упоминает их в своей книге «Начала» и в теореме 36 книги IX приводит общую формулу для этих чисел.

Появление совершенных чисел

Примерно в 100 году философ Никомах Герасский, представитель неопифагореизма, написал «Введение в арифметику», где приводилась классификация всех чисел. Числа делились на избыточные (сумма делителей которых больше самого числа), недостаточные (сумма делителей которых меньше самого числа) и совершенные (сумма делителей которых равна самому числу). В этой книге объясняется формула Евклида для нахождения совершенных чисел, «которая охватывает все совершенные числа и не включает ни одного, которое таковым не является. Совершенные числа находятся так. Сначала нужно записать в ряд некоторое количество степеней двойки, начиная с единицы и заканчивая любым выбранным вами числом: 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096. Для каждого нового члена нужно найти сумму этого ряда. Если результат не является составным числом, его нужно умножить на последнее число, добавленное в ряд. Результат умножения всегда будет совершенным числом. Если же сумма не является простым числом, нужно прибавить к ней следующий член ряда и посмотреть, является ли новая сумма составным числом. Если результат — составное число, нужно продолжать складывать члены ряда. Если же результат является простым числом, его нужно умножить на последний член ряда, результат будет совершенным числом, и так до бесконечности. Это легко проверить на конкретных примерах:

1 + 2 = 3 является простым, следовательно,

(1 + 2)·2 = 3·2 = 6 — совершенное число.

1 + 2 + 4 = 7 является простым, следовательно,

(1 + 2 + 4)·4 = 7·4 = 28 — совершенное число.

1 + 2 + 4 + 8 = 13 не является простым, поэтому мы пропускаем его.

Далее

1 + 2 + 4 + 8 + 16 = 31 является простым, следовательно,

(1 + 2 + 4 + 8 + 16)·16 = 31·16 = 496 — совершенное число.

1 + 2 + 4 + 8 + 16 + 32 = 63 не является простым, поэтому мы пропускаем его.

Наконец, 1 + 2 + 4 + 8 + 16 + 32 + 64 = 127 — простое, следовательно,

(1 + 2 + 4 + 8 + 16 + 32 + 64)·64 = 127·64 = 8128 — совершенное число.

С помощью этой формулы действительно можно найти первые четыре совершенных числа. Существует и другая, более простая формула для нахождения совершенных чисел. Нетрудно видеть, что если мы складываем степени двойки, начиная с нулевой и не пропуская ни одной, то результатом будет следующая степень двойки минус один, иными словами,

1 + 2 = 3 = 4–1 = 22 — 1;

1 + 2 + 4 = 7 = 8–1 = 23 — 1;

1 + 2 + 4 + 8 = 15 = 16 — 1 = 2 — 1.

И так далее. Таким образом, мы можем преобразовать формулу Евклида и записать ее в современной математической нотации:

6 = (22 — 1)·2

28 = (23 — 1)·22

496 = (25 — 1)·24

8128 = (27 — 1)·26.

И всякий раз, когда 2n — 1 простое число, (2n — 1)·2n– 1 будет совершенным числом.

Предположения о совершенных числах

Математики Античности, которым были известны первые четыре совершенных числа, выдвигали самые разнообразные предположения. Например, можно заметить, что значение для первых четырех простых чисел является членом последовательности простых чисел 2, 3, 3, 7. Возникает соблазн предположить, что следующим совершенным числом будет (211 — 1)·210, но это не так, потому что 211 — 1 = 2047 = 23·89. Это число не является простым, следовательно, n = 11 не соответствует совершенному числу.

Также было обнаружено, что первое совершенное число имеет одну цифру, второе — две, третье — три и так далее. Следовательно, считалось, что пятое совершенное число будет иметь пять цифр. Но это не так, потому что пятым совершенным числом является (213 — 1)· 212  = 8191·4096 = 33 350 336, которое имеет восемь цифр.

Древние также заметили, что последние цифры совершенных чисел чередуются: 6, 8, 6, 8, 6. Следовательно, шестое совершенное число должно заканчиваться на 8. Но и это предположение не подтвердилось, так как шестое совершенное число равно (217 — 1)·216 = 131 071·65 536 = 8 589 869 056 и заканчивается на 6.

Но не все предположения древних оказывались ошибочными. Они предполагали, что все совершенные числа будут четными и что с помощью данной формулы можно будет найти их все. Это очень легко предположить, но крайне сложно доказать. Лишь в XVIII веке Леонард Эйлер привел первое доказательство того, что подобным образом можно получить все четные совершенные числа. Следовательно, было доказано, что все совершенные числа оканчиваются на 6 или на 8, но эти цифры не чередуются. Но до сих пор неизвестно, существуют ли нечетные совершенные числа. Было лишь доказано, что если и существует нечетное совершенное число, то оно должно быть больше 10300. Однако это не доказывает, что нечетных совершенных чисел не существует, ведь что значат несколько триллионов по сравнению с необозримым бесконечным рядом натуральных чисел?

Портрет Леонарда Эйлера кисти Эмануэля Хандманна. Этот математик XVIII века совершил важные открытия, касающиеся совершенных и простых чисел.

Также была выдвинута гипотеза, что совершенных чисел бесконечно много, но пока это не удалось доказать. Постоянно объявляют о том, что открыто новое простое число Мерсенна. Каждому такому числу соответствует совершенное число. В настоящее время сотни добровольцев участвуют в проекте GIMPS (Great Internet Mersenne Prime Search), цель которого — поиск простых чисел Мерсенна. Участники проекта загружают на свои компьютеры программу, написанную Джорджем Вольтманом.

Поделиться:
Популярные книги

Школа. Первый пояс

Игнатов Михаил Павлович
2. Путь
Фантастика:
фэнтези
7.67
рейтинг книги
Школа. Первый пояс

Лейб-хирург

Дроздов Анатолий Федорович
2. Зауряд-врач
Фантастика:
альтернативная история
7.34
рейтинг книги
Лейб-хирург

Не грози Дубровскому! Том VIII

Панарин Антон
8. РОС: Не грози Дубровскому!
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Не грози Дубровскому! Том VIII

Вернуть невесту. Ловушка для попаданки

Ардова Алиса
1. Вернуть невесту
Любовные романы:
любовно-фантастические романы
8.49
рейтинг книги
Вернуть невесту. Ловушка для попаданки

Идеальный мир для Лекаря

Сапфир Олег
1. Лекарь
Фантастика:
фэнтези
юмористическое фэнтези
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря

Последний Паладин. Том 4

Саваровский Роман
4. Путь Паладина
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Последний Паладин. Том 4

Титан империи 7

Артемов Александр Александрович
7. Титан Империи
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Титан империи 7

На руинах Мальрока

Каменистый Артем
2. Девятый
Фантастика:
боевая фантастика
9.02
рейтинг книги
На руинах Мальрока

Сопряжение 9

Астахов Евгений Евгеньевич
9. Сопряжение
Фантастика:
боевая фантастика
постапокалипсис
технофэнтези
рпг
5.00
рейтинг книги
Сопряжение 9

Здравствуй, 1985-й

Иванов Дмитрий
2. Девяностые
Фантастика:
альтернативная история
5.25
рейтинг книги
Здравствуй, 1985-й

Генерал-адмирал. Тетралогия

Злотников Роман Валерьевич
Генерал-адмирал
Фантастика:
альтернативная история
8.71
рейтинг книги
Генерал-адмирал. Тетралогия

Машенька и опер Медведев

Рам Янка
1. Накосячившие опера
Любовные романы:
современные любовные романы
6.40
рейтинг книги
Машенька и опер Медведев

Беглец. Второй пояс

Игнатов Михаил Павлович
8. Путь
Фантастика:
фэнтези
героическая фантастика
боевая фантастика
5.67
рейтинг книги
Беглец. Второй пояс

Защитник. Второй пояс

Игнатов Михаил Павлович
10. Путь
Фантастика:
фэнтези
5.25
рейтинг книги
Защитник. Второй пояс