Чтение онлайн

на главную - закладки

Жанры

Том13. Абсолютная точность и другие иллюзии. Секреты статистики
Шрифт:

Среднее значение и среднеквадратическое отклонение — две величины, характеризующие нормальное распределение.

Если вес мешков с сахаром подчиняется нормальному закону, среднее значение равно 1000 г, среднеквадратическое отклонение — 5 г, то можно рассчитать, сколько мешков будут иметь вес свыше 1010 г, сколько — от 995 до 1010 г или менее 995 г. До недавнего времени для этого требовалось выполнять расчеты и сверяться со специальными

таблицами (которые до сих пор включаются в некоторые учебники по статистике), но сегодня все расчеты можно выполнить автоматически с помощью электронных таблиц Excel. Например, вероятность того, что мешок сахара весит меньше 995 г, равна

Заметим, что приблизительно 16 % мешков имеют вес менее 995 г, но о весе конкретного мешка ничего определенного сказать нельзя. По этой же причине можно говорить об ожидаемой продолжительности жизни населения, но не о конкретной дате смерти отдельного человека.

Также существуют правила, основанные на том, что вне зависимости от среднего значения (, читается «мю») и среднеквадратического отклонения (, читается «сигма») 68 % значений будут лежать в интервале ± , 95 % — в интервале ± 2, 99,7 % — в интервале ± 3. Так, в прошлом примере среднее значение = 1000, среднеквадратическое отклонение = 5. В интервале 995—1005 будет лежать 68 % результатов. Следовательно, в этот интервал не попадает 32 % значений, по 16 % с каждой стороны. Это означает, что 16 % мешков будут иметь вес меньше 995 г.

Это правило также можно использовать для интерпретации среднеквадратического отклонения. Если мы рассмотрим распределение роста людей, среднее значение может равняться 170 см. В этом случае среднеквадратическое отклонение должно лежать в интервале 6–7 см, так как 1 или 2 % населения гарантированно имеют рост выше 190 см. Следовательно, это значение превышает среднее на три среднеквадратических отклонения.

Другие виды распределения. Рассуждения о «теоретических» моделях

Существуют и другие законы распределения вероятностей. Например, если случайная величина является непрерывной и все ее значения равновероятны, распределение называется равномерным. Когда мы используем функцию «=СЛЧИС » в Excel для генерации случайных чисел, результаты подчиняются именно этому закону. Существует много других законов распределения. На следующей иллюстрации показаны законы распределения, включенные в пакет статистических программ Minitab.

Распределения вероятностей, для которых можно вычислить вероятности напрямую с помощью пакета статистических программ Minitab.

Однако не следует путать модель с реальностью. Например, сфера очень часто встречается во Вселенной, но не существует объектов идеально сферической формы. Зачем же тогда нужны формулы вычисления площади поверхности или объема сферы? Они позволяют получить достаточно точные значения для применения на практике. Это же справедливо и для законов распределения вероятностей.

Один из самых часто используемых примеров нормального распределения — распределение роста людей. Однако если мы возьмем точные данные о росте миллиона взрослых жителей нашей планеты, то увидим, что они не подчиняются нормальному распределению с абсолютной точностью. Этого не произойдет и в том случае, если мы разделим людей на группы в зависимости от пола, расы и других характеристик.

Нормальное распределение — это качественная модель, которая позволяет с достаточной степенью точности оценить рост людей. Тем не менее это всего лишь модель, которая не полностью соответствует реальности. Это же справедливо и для других законов распределения вероятностей, так как на практике гипотезы не выполняются с абсолютной точностью. Все эти законы описывают лишь теоретические модели (определение «теоретическая» для модели является излишним), которые тем не менее крайне полезны.

Занимательные задачи: удивительные вероятности

Задачи теории вероятностей могут быть достаточно сложными, даже несмотря на относительную простоту формулировки (какова вероятность того, что в выигрышной комбинации национальной лотереи встретятся два последовательных числа?). Интерес представляют необычные вероятности, которые часто противоречат тому, что подсказывает нам интуиция. В то же время сложные задачи нетрудно решить, применив немного воображения. Рассмотрим несколько примеров.

Ложноположительные результаты обследования

При медицинском осмотре у человека нашли заболевание, которое встречается всего у 1 % населения. В 5 % случаев результат обследования является ложноположительным (обследование показывает, что человек болен, когда в действительности он здоров). Какова вероятность того, что этот человек действительно болен?

Вы можете подумать, что ответ — 95 %, но это неверно. Истинная вероятность намного меньше. Из каждой 1000 результатов 50 являются ложноположительными (5 %), 1 — истинно положительным. На каждый 51 положительный результат приходится лишь один истинно положительный. Значит, вероятность того, что пациент действительно болен, равна всего 1/51, то есть немного меньше 2 %.

Задача о днях рождения

В группе 30 студентов. Какова вероятность того, что два студента или более отмечают день рождения в один и тот же день?

Многие считают, что эта вероятность невелика, но в действительности она не настолько мала, как может показаться. Сначала нужно вычислить вероятность того, что два человека родились в разные дни. Первый из них может родиться в любой день года (365 благоприятных исходов из 365 возможных), второй может родиться в любой день за исключением того дня, в который родился первый (364 благоприятных исхода из 365 возможных):

Аналогично можно вычислить вероятность того, что три человека родились в разные дни:

Вероятность того, что все 30 студентов родились в разные дни, будет равна:

Существует всего два возможных случая: либо все студенты родились в разные дни, либо минимум двое из них родились в один и тот же день. Следовательно, вероятность того, что как минимум два студента празднуют день рождения в один и тот же день, равна

Поделиться:
Популярные книги

Ветер перемен

Ланцов Михаил Алексеевич
5. Сын Петра
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Ветер перемен

LIVE-RPG. Эволюция 2

Кронос Александр
2. Эволюция. Live-RPG
Фантастика:
социально-философская фантастика
героическая фантастика
киберпанк
7.29
рейтинг книги
LIVE-RPG. Эволюция 2

Идеальный мир для Социопата 5

Сапфир Олег
5. Социопат
Фантастика:
боевая фантастика
рпг
5.50
рейтинг книги
Идеальный мир для Социопата 5

Proxy bellum

Ланцов Михаил Алексеевич
5. Фрунзе
Фантастика:
попаданцы
альтернативная история
4.25
рейтинг книги
Proxy bellum

Ваантан

Кораблев Родион
10. Другая сторона
Фантастика:
боевая фантастика
рпг
5.00
рейтинг книги
Ваантан

Архил...?

Кожевников Павел
1. Архил...?
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Архил...?

Восьмое правило дворянина

Герда Александр
8. Истинный дворянин
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Восьмое правило дворянина

Шипучка для Сухого

Зайцева Мария
Любовные романы:
современные любовные романы
8.29
рейтинг книги
Шипучка для Сухого

Шатун. Лесной гамбит

Трофимов Ерофей
2. Шатун
Фантастика:
боевая фантастика
7.43
рейтинг книги
Шатун. Лесной гамбит

Бальмануг. (Не) Любовница 2

Лашина Полина
4. Мир Десяти
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Бальмануг. (Не) Любовница 2

Курсант: Назад в СССР 7

Дамиров Рафаэль
7. Курсант
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Курсант: Назад в СССР 7

Книга пяти колец. Том 2

Зайцев Константин
2. Книга пяти колец
Фантастика:
фэнтези
боевая фантастика
5.00
рейтинг книги
Книга пяти колец. Том 2

Идеальный мир для Лекаря 7

Сапфир Олег
7. Лекарь
Фантастика:
юмористическая фантастика
попаданцы
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 7

Отмороженный 6.0

Гарцевич Евгений Александрович
6. Отмороженный
Фантастика:
боевая фантастика
постапокалипсис
рпг
5.00
рейтинг книги
Отмороженный 6.0