Том13. Абсолютная точность и другие иллюзии. Секреты статистики
Шрифт:
Средние значения чисел в выигрышных комбинациях.
Среднее значение будет с намного большей вероятностью лежать между 20 и 30, чем между 5 и 15. Почему бы нам не выбирать только те комбинации, в которых среднее значение чисел лежит в промежутке от 20 до 30? Ведь таких комбинаций намного больше, и вероятность того, что одна конкретная комбинация окажется выигрышной, всегда одинакова. Иными словами, если
* * *
Равносильны ли понятия «дом» и «домохозяйство»? Очевидно, нет, так как если в доме никто не живет, он не является домохозяйством. Домохозяйством также нельзя считать дом, где кто-то живет только по выходным или в сезон отпусков. Является ли домохозяйством квартира, где живут студенты в течение учебного года? Связаны ли понятия «домохозяйство» и «семья»? Следовательно, необходимо четко сформулировать, что такое домохозяйство.
Определение подключения к Интернету представляет меньше трудностей, так как способ подключения, будь то ADSL-модем или оптический кабель, не имеет значения. Однако некоторые домохозяйства используют незащищенное беспроводное соединение соседей или бесплатное подключение из соседней библиотеки или кафе. Следует ли считать, что эти домохозяйства подключены к Интернету, или же нужно учитывать только тех, кто платит за подключение?
ДОМОХОЗЯЙСТВО, социально-экон. ячейка, объединяющая людей отношениями, возникающими при организации их совместного быта: ведении общего домашнего хозяйства, совместном проживании и т. д. В отличие от семьи, отношения родства или свойства между членами одного Д. необязательны: оно может включать жильцов, пансионеров, прислугу и других, а также состоять из одного человека, живущего самостоятельно.
Будем считать домохозяйством дом или квартиру, где большую часть года проживает один или несколько человек, связанных родственными отношениями. Будем предполагать, что домохозяйство подключено к Интернету, если подключение находится под его контролем и может быть отключено или подключено в любой момент.
Если мы возьмем выборку в 1000 из 100000 домохозяйств и в нашей выборке 51,9 % домохозяйств будут подключены к Интернету, значит ли это, что точно таким же будет процент для всей генеральной совокупности? Очевидно, что это необязательно так. Если мы сформируем другую выборку, также случайным образом, то результат, вероятно, будет отличаться, например он может быть равен 50,7 или 52,3 %.
По этой причине в представление результатов подобных исследований входит не только примерное значение, но и предельная ошибка. Например, результат оценки может быть равен (51,9 ± 2,3) %. Эти 2,3 %, которые мы прибавляем и вычитаем, и называются предельной ошибкой средней величины. Это означает, что мы получили конкретное значение, но не можем быть до конца уверены, что доля генеральной совокупности точно равна этому числу. Теория вероятностей позволяет определить точность, с которой произведена оценка, и вычислить предельную ошибку средней величины (исходные значения подчиняются закону биномиального распределения: мы анализируем конкретное домохозяйство и можем получить один из двух результатов — домохозяйство подключено к Интернету либо нет).
Интервал, покрывающий данную величину с заданной надежностью, называется доверительным интервалом. Можно ли гарантировать, что истинное
Иллюстрация понятия доверительного интервала.
Можно рассчитать доверительные интервалы с надежностью 99 % или 99,9 %. Обычно это не делается, поскольку, учитывая размер выборки, с ростом надежности доверительный интервал расширяется, и нет никакого смысла говорить, что искомая доля лежит в интервале (51,9±40)%: это можно сказать, не проводя вообще никаких вычислений. Если мы хотим повысить надежность оценки, сохранив при этом предельную ошибку на прежнем уровне, то единственным выходом будет увеличение размера выборки (деньги решают множество проблем, и эту в том числе).
За подобными заголовками в прессе обычно следует примерно такой текст: «Согласно исследованию, проведенному центром X, если бы выборы состоялись сегодня, партия А опередила бы партию В на 3,6 пункта. Три месяца назад ее преимущество было на полпункта меньше. Данные подтверждают, что популярность партии А растет».
В примечаниях к этой статье, помимо прочего, упоминается, что предельная ошибка равна ±4,3 %. Поверхностный анализ этих данных показывает, что преимущество партии А вовсе не столь очевидно. Если в пользу партии А проголосовали 41,6 % опрошенных, то при данной предельной ошибке оценка лежит в интервале от 37,1 % до 46,1 %. Если в пользу партии В проголосовало 38 %, то границами доверительного интервала будут 33,3 % и 42,5 %. Следовательно, в соответствии с результатами опроса можно утверждать, что рейтинг партии А равен 39 %, партии В — 40 %. Нет никаких сомнений в том, что если три месяца назад преимущество партии А было на полпункта меньше (по результатам опроса, а не в реальности), это не является доказательством роста популярности партии А.
Вопрос на миллион
Очень часто при проведении исследований возникает вопрос: каким должен быть размер выборки, чтобы результатам можно было доверять? Ответ на этот вопрос зависит от нескольких параметров.
1. От желаемой точности результатов, иными словами от допустимой предельной ошибки. Если мы хотим получить результат с предельной ошибкой 1 %, размер выборки должен быть больше, чем при предельной ошибке в 4 %.
2. От желаемой надежности результата. Если нас устроит надежность 80 %, размер выборки будет меньше, чем для надежности в 95 %.