Чтение онлайн

на главную

Жанры

Том13. Абсолютная точность и другие иллюзии. Секреты статистики
Шрифт:

* * *

Вес, рост, коэффициент корреляции и его значение

Мы знаем, что рост и вес человека связаны и что высокие люди обычно весят больше, чем низкие (разумеется, существуют исключения, но мы говорим об общем правиле). Здесь речь не идет о строгой связи: нет математической формулы, с помощью которой можно вычислить вес человека, зная его рост. Тем не менее существует тенденция, определенная взаимосвязь.

На

следующей диаграмме показана связь роста и веса в группе из 92 студентов университета (использовались данные, входящие в пакет статистических программ Minitab, о котором мы уже упоминали в главе 1).

Соотношение между весом и ростом в группе из 92 студентов.

Как вы охарактеризуете эту зависимость? Она «сильная», «заметная» или «слабая»? Как вы понимаете, в подобных ситуациях необходимо оценивать зависимость более точно. Для этого используется показатель, называемый коэффициент корреляции (иногда его называют коэффициентом корреляции Пирсона).

Формула для вычисления коэффициента корреляции несколько громоздка, но вывести ее нетрудно (не беспокойтесь, мы не будем выводить эту формулу). По сравнению с другими похожими показателями коэффициент корреляции обладает многими преимуществами: его значения всегда лежат в интервале от —1 до 1 и не зависят от единицы измерения исходных данных. В нашем случае коэффициент корреляции не изменится, если мы будем использовать сантиметры и килограммы вместо дюймов и фунтов (как в исходных примерах).

Если коэффициент корреляции равен 1, это означает, что между двумя переменными существует строгая зависимость. При увеличении значения одной переменной значение другой также увеличится. В этом случае между переменными действительно присутствует математическая зависимость, и зная значение одной переменной, можно точно вычислить значение другой. Однако в реальности подобная ситуация встречается крайне редко. Если коэффициент корреляции равен, например, 0,8, это означает наличие четкой взаимосвязи. В нашем примере коэффициент корреляции равен 0,785. Если он равен нулю, это указывает на отсутствие какой-либо взаимосвязи. Отрицательные значения означают то же, что и положительные, с единственной разницей: с ростом значения одной переменной значение другой будет не увеличиваться, а уменьшаться.

Расчет коэффициента корреляции с помощью Excel.

Однако этот показатель имеет свои недостатки (ничто не совершенно!). Если взаимосвязь между переменными отсутствует, не следует ожидать, что коэффициент корреляции будет равен нулю. Это будет означать, что данные распределены абсолютно равномерно, что не встречается на практике. Коэффициент корреляции может быть примерно равным нулю, но что именно означает это «примерно равен»?

Кроме того, значение этого коэффициента зависит от объема исходных данных. Если объем исходных данных невелик, а значение коэффициента корреляции далеко от нуля, это не означает наличие корреляции. Если даны всего лишь два значения каждой переменной, то коэффициент корреляции всегда будет равен 1 или —1 вне зависимости от того, присутствует ли корреляция на самом деле.

На следующей диаграмме представлено 35 точек, коэффициент

корреляции равен 0,494. Это значение достаточно далеко от нуля, чтобы можно было говорить о присутствии корреляции? Или же это расположение точек можно получить случайным образом и переменные никак не связаны между собой?

Существует ли взаимосвязь между этими переменными?

Чтобы определить, действительно ли полученный коэффициент корреляции свидетельствует о взаимосвязи (или, если говорить на языке статистики, является ли это значение статистически значимым), используем моделирование. Сгенерируем два множества случайных чисел по 35 чисел в каждом. Очевидно, что эти числа будут никак не связаны между собой, однако коэффициент корреляции между ними не будет строго равен нулю, а будет равняться, например, — 0,123. Если мы заново сформируем эти два множества случайным образом и повторим моделирование 10000 раз, то получим 10000 значений коэффициента корреляции между двумя совокупностями из 35 чисел, которые никак не связаны между собой. Чтобы рассчитать эти значения, используем небольшую программу. Результат ее работы представлен на следующей гистограмме. Вертикальной чертой обозначено значение коэффициента корреляции, полученное нами в предыдущем примере, равное 0,494.

Значения коэффициента корреляции для двух совокупностей из 35 не связанных между собой чисел.

Из гистограммы следует, что коэффициент корреляции действительно может принять полученное значение, если переменные не связаны между собой, но очевидно, что вероятность этого крайне мала. Анализ результатов моделирования показывает (на гистограмме это не заметно), что 12 значений больше 0,494, 9 — меньше —0,494. Это означает, что полученное нами значение (или большее) выпадает примерно два раза из 1000, если исходные переменные независимы.

Может ли быть так, что наш случай — именно тот, что выпадает два раза из 1000? Это неизвестно, но маловероятно. Разумнее всего полагать, что проанализированные нами переменные, соответствующие весу и росту 35 женщин в группе из 92 студентов, взаимосвязаны.

Схема рассуждений: проверка статистических гипотез

И в задаче, поставленной перед дегустатором чая, и в задаче о связи между переменными, которую мы только что рассмотрели, нужно ответить, по сути, на один и тот же вопрос: разумно ли считать, что дегустатор может различить вкус чая, приготовленного по-разному? Можно ли считать, что две переменные коррелируют? В обоих случаях, чтобы ответить на этот вопрос, нужно действовать по одной и той же схеме.

1. Нужно сформулировать исходную гипотезу. Чаще выбирается консервативная гипотеза: в задаче о дегустаторе чая мы предполагаем, что он не способен различить чай на вкус, а в задаче о корреляции — что переменные никак не связаны.

2. На основе доступных данных рассчитывается требуемая величина. Если данные отсутствуют или использовать их нельзя, нужно получить подходящие данные. В задаче о связи между переменными искомой величиной является коэффициент корреляции. В задаче о дегустаторе чая искомой величиной является число неверно указанных чашек во время эксперимента.

Поделиться:
Популярные книги

Камень. Книга вторая

Минин Станислав
2. Камень
Фантастика:
фэнтези
8.52
рейтинг книги
Камень. Книга вторая

Хуррит

Рави Ивар
Фантастика:
героическая фантастика
попаданцы
альтернативная история
5.00
рейтинг книги
Хуррит

Восход. Солнцев. Книга X

Скабер Артемий
10. Голос Бога
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Восход. Солнцев. Книга X

Неудержимый. Книга XVIII

Боярский Андрей
18. Неудержимый
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Неудержимый. Книга XVIII

Уязвимость

Рам Янка
Любовные романы:
современные любовные романы
7.44
рейтинг книги
Уязвимость

Идеальный мир для Лекаря 17

Сапфир Олег
17. Лекарь
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 17

Протокол "Наследник"

Лисина Александра
1. Гибрид
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Протокол Наследник

Треск штанов

Ланцов Михаил Алексеевич
6. Сын Петра
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Треск штанов

Дело Чести

Щукин Иван
5. Жизни Архимага
Фантастика:
городское фэнтези
попаданцы
аниме
5.00
рейтинг книги
Дело Чести

Убивать чтобы жить 3

Бор Жорж
3. УЧЖ
Фантастика:
героическая фантастика
боевая фантастика
рпг
5.00
рейтинг книги
Убивать чтобы жить 3

Попаданка для Дракона, или Жена любой ценой

Герр Ольга
Любовные романы:
любовно-фантастические романы
7.17
рейтинг книги
Попаданка для Дракона, или Жена любой ценой

Неудержимый. Книга XII

Боярский Андрей
12. Неудержимый
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Неудержимый. Книга XII

(Противо)показаны друг другу

Юнина Наталья
Любовные романы:
современные любовные романы
эро литература
5.25
рейтинг книги
(Противо)показаны друг другу

Совок – 3

Агарев Вадим
3. Совок
Фантастика:
фэнтези
детективная фантастика
попаданцы
7.92
рейтинг книги
Совок – 3