Трехмерный мир. Евклид. Геометрия
Шрифт:
Эпилог
XIX век в геометрии завершился появлением фундаментального труда гениального немецкого математика Давида Гильберта «Основания геометрии» (Grundlagen der Geometrie). С ним сформировался (хотя может показаться, что еще формируется) определенный подход к пониманию математики. Гильберт аксиоматизировал евклидову геометрию, но сделал это, не прибегая к геометрической
«Справедливость аксиом и теорем ничуть не поколеблется, если мы заменим привычные термины «точка, прямая, плоскость» другими, столь же условными: «стул, стол, пивная кружка»!»
Разница между этими текстами Евклида и Гильберта состоит в использовании интуиции и наглядных соображений. Гильберт пытается избавиться от субъективности в науке. Для этого он прибегает к строгому формализму: аксиомы определяют отношения между геометрическими объектами (и они не требуют других определений, кроме самих этих аксиом), и на их основе, используя инструментарий формальной логики, создаются теоремы. При этом подходе невозможно вывести утверждение и его опровержение (на этой особенности основан метод доведения до абсурда), и непротиворечивость теории, построенной таким образом, подразумевает существование гео-
метрических объектов. Гильберт попытался создать твердую основу математики, после того как потерпел поражение подход, основанный на теории типов Рассела. Вдохновившись этим новым веянием в математической науке, выдающийся французский ученый Жан Дьёдонне во время семинара в 1969 году воскликнул: «Долой Евклида!» Этими словами он вовсе не принижал заслуги гениального александрийского математика, но стремился раскритиковать чрезмерное насаждение его геометрического учения в школах того времени. Так в начале 1970-х зарождалась наука, позже названная современной математикой, — новый подход к математике, имевший невероятный успех. Гильберт говорил:
«Моя мысль заключается в следующем: несмотря на высокую педагогическую и эвристическую ценность генетического метода, аксиоматический метод [...] предпочтительнее, поскольку дает окончательную картину наших знаний и их безупречной логической точности».
И все же спустя 20 лет его метод оказался «слишком современным». Через 2000 лет после написания «Начал» дискуссия о педагогической ценности евклидовых теорий — с точки зрения генетического метода — открыта снова.
Список рекомендуемой литературы
Bell, Е.Т., Losgrandes matemdticos, Buenos Aires, Losada, 2010.
Boyer, C., Historia de la matemdtica, Madrid, Alianza Editorial, 2007.
Eggers Lan, C., El nacimiento de la matemdtica en Grecia, Buenos Aires, Eudeba, 1995.
Hilbert, D., Fundamentos de geometria, Madrid, Centro Superior de Investigaciones Cientificas, 1953 (reeditado en 2010).
Kline, M., Matemdticos. Laperdida de la certidumbre, Madrid, Siglo XXI, 1985.
Korner, S., Introduccion a la filosofia matemdtica, Mexico, Siglo XXI, 1967.
Puertas Castanos, M.L., Elementos, tres volumenes, Madrid, Gredos, 1991,1994 у 1996.
Pla i Carrera, J., La veritat matemdtica, Barcelona, Reial Academia de Doctors, 2003.
—: Liu Hui. Nueve capitulos de la matemdtica china, Madrid, Nivola, 2009.
Stewart, I., Historia de las matemdticos, Madrid, Critica, 2008.
Vera, F., Cientificos griegos, 2 volumenes, Madrid, Aguilar, 1970.
Указатель
Автолик Питанский 29, 31, 34
аксиома 42, 43, 65, 74, 75, 77, 81, 118, 159
алгоритм Евклида 46, 76, 139, 141, 145— 147, 149, 154
анализ 31, 33, 53, 54, 56, 59, 80, 101, 103, 104, 116, 119
Антифонт 29, 34, 133
Аполлоний 9, 11, 25, 29, 30, 49
Аристотель 8, 9, 15, 16, 27, 29, 31, 34, 35, 37, 41-43, 48-51, 58, 80-82, 85, 110, 111, 125, 133, 149, 160
арифметика 7-9, 11, 34, 42, 45, 46, 51, 60, 80, 82, 109, 141, 145-149, 152, 153, 159
Архимед 9, 11, 17, 25, 29-31, 41, 46, 49, 65, 72, 78, 109, 112, 118, 125, 126, 139, 140
бесконечность 8, 9, 61, 63, 80, 82-85, 86, 110, 125, 127, 133, 134, 146, 149, 153
актуальная 80, 82-84, 86, 110, 134
первых чисел 83, 149
потенциальная 80, 82, 85
путем прибавления 80
существование бесконечного 80, 82
Бойяи, Янош 73, 75, 76, 86
Брисон Гераклийский 29, 34, 133
величина 18, 19, 42, 44, 49, 51, 60, 80, 92, 109, 110, 112-114, 116-120, 124-126, 147
соизмеримая 113-117, 121, 122, 147
несоизмеримая 11, 46, 92, 113-116, 119, 121-123, 146, 147
пропорциональная 24, 120, 124, 137, 144, 147
Гаусс, Карл Фридрих 68, 75, 78, 79, 145
геометрия 7-9, 11, 15, 17-20, 22, 25, 30- 33, 42-45, 48, 49, 51, 61, 63-65, 68, 69, 71-80, 87, 90, 92, 94, 95, 109, 110, 112, 118, 124, 127, 141, 161, 162
ванной 78
внутреннего двора 72
гиперболическая 73, 77-79
евклидова 8, 63, 64, 68, 69, 71, 73, 76-80, 161
неевклидова 61, 74-76
сферическая 72, 75, 77, 79
эллиптическая 72, 77, 79
Герои Александрийский 11, 30, 60
Гильберт, Давид 65, 77, 81, 127, 161, 162
гипотеза 26, 35, 40, 42, 43, 58, 71, 74, 76, 111
Гиппас из Метапонта 29, 34
Гиппий Элидский 11, 29, 34
Гиппократ Хиосский 11, 30, 32-34, 48, 131, 132, 145
Гипсикл Александрийский 11, 19, 30, 44, 47, 104
да Винчи, Леонардо 41, 106
Демокрит 11, 29, 34
Диофант 8, 9, 11, 30, 97