Чтение онлайн

на главную

Жанры

Тринадцать вещей, в которых нет ни малейшего смысла
Шрифт:

Люди столетиями наблюдали их в небесах; об одной такой вспышке сообщил датский астроном Тихо Браге еще в 1572 году, за тридцать с лишним лет до изобретения телескопа. Звезда становится сверхновой, когда ее масса превышает критический размер и разрушается под собственной тяжестью. В течение нескольких земных недель или месяцев, пока гибнущее светило превращается в нейтронную звезду или даже в черную дыру, оно пылает в десятки миллиардов раз ярче и жарче, чем наше Солнце. Подобную картину земляне наблюдали, например, в понедельник 23 февраля 1987 года. Взрыв голубого сверхгиганта под названием Сандулик-69202 в галактике Большое Магелланово Облако получил широкую известность по двум причинам. Во-первых, это

самая мощная вспышка сверхновой, отмеченная с 1604 года. Во-вторых, она впервые дала стандарты для измерения расстояний в космосе.

Вспышки некоторых сверхновых — их обозначают как тип Ia (или SN Ia) — имеют специфические характеристики, чрезвычайно важные для астрономов. Звезды этого типа взрываются, потому что своим притяжением «высосали» слишком много вещества из соседних небесных тел. Проанализировав световой спектр такой вспышки и скорость ее затухания, можно определить, какое расстояние свет прошел до Земли и насколько сильно его на этом пути «растянуло» расширение Вселенной.

Единственное неудобство такого метода — слишком тесные временные рамки. В изучении сверхновых без синхронизации не сделать ни шагу. Если хотите добыть действительно ценную информацию, ее поиски должны уложиться в считанные недели с того момента, как свет вспышки дошел до Земли. А поскольку взрыв сверхновой в какой-нибудь галактике случается примерно раз в сто лет, необходим постоянный телескопический мониторинг несметного множества звездных скоплений.

Тяготы этого монотонного труда — давнишняя головная боль астрономов. Скажем, в обсерватории Лоуэлла во Флагстаффе можно познакомиться с утомительными методами наблюдений, практиковавшимися в дни Слайфера. Он, изучая Плутон, пользовался астрономической версией игры «найди разницу». Два фотоснимка одного и того же участка звездного неба, сделанные в разные ночи, помещаются в устройство под названием «блинк-компаратор», снабженное окуляром с подвижной заслонкой. Затем надо внимательно рассматривать снимки, чередующие друг друга. Побеждает тот, кто укажет единственную светлую точку среди множества других, меняющую положение от снимка к снимку. Это мигающее пятнышко и есть искомая планета.

Хорошо, что на фотографиях, выставленных в музее обсерватории Лоуэлла, кто-то догадался пририсовать к мерцающей точке жирную белую стрелку. Конечно же, современная технология обработки цифровых изображений несравненно облегчает локализацию сверхновых: сегодня компьютер сопоставит за нас фотографии, сам установит различия между ними и даст все нужные подсказки. Некоторые находки окажутся на поверку астероидами, другие — пульсацией черных дыр в центрах галактик; еще один вид ложных сигналов — яркие следы от субатомных частиц, бомбардирующих земную атмосферу. И лишь изредка обнаружится среди них свет далекой «лопнувшей» звезды.

Первые ценные интерпретации данных о ярчайшей сверхновой представила в июне 1996 года группа сотрудников Национальной лаборатории имени Эрнеста Лоуренса при Калифорнийском университете в Беркли (или, как нередко сокращают специалисты, Лоуренс-Беркли). Об этом было объявлено на космологической конференции по случаю 250-летия Принстонского университета, приемной альма-матер Эйнштейна. Весьма удачный, как выяснилось, повод воскресить космологическую константу.

Когда астрономы приступили к исследованиям сверхновых, чтобы с их помощью составить своего рода карту разбегания космоса, они были уверены, что обнаружат признаки замедления. В конце концов, должна же энергия Большого взрыва когда-нибудь иссякнуть; тут гравитация вступит в свои права и крепко надавит на тормоз. Но оказалось, не так-то просто устроена Вселенная.

На первый взгляд результаты Лоуренс-Беркли подтверждали ожидания. Свечение сверхновой показало, что расширение Вселенной замедляется: рано или

поздно притяжение ее массы обуздает разбегание и установит коэффициент омега на отметке, близкой к единице.

И тем не менее это открытие было спорным. Вся известная науке масса Вселенной, включая пресловутую темную материю, дает омеге значение не более чем 0,3. Исследователи «недоучли» невидимое? Такое казалось маловероятным: они к тому времени уже овладели дифференцированными методами подсчета массы галактик. Любой из способов показывал, что вещества там гораздо больше, чем можно наблюдать. И все эти способы давали примерно одинаковые результаты.

Если концепция темной материи обоснованна, тогда за чем дело стало? Космологи Майкл Тернер и Лоуренс Максвелл Краусс явились на принстонскую встречу с готовым ответом. Почему бы, сказали они, не признать темную материю равной 0,3, при этом позволяя некоторой иной сущности внести остальные семь десятых. Вместо того чтобы разыскивать какую-то там недостающую массу, не резонно ли допустить, что эта доля принадлежит дополнительной энергии? Надо вернуть космологическую константу Эйнштейна, заявили Тернер и Краусс.

Экспериментаторы, как водится, добились успеха вопреки построениям теоретиков. Из результатов Лоуренс-Беркли, опубликованных Солом Перлмуттером, следовало, что гравитация вещества может составить чуть ли не всю омегу. Так что нет нужды возвращать космологическую константу, надо просто разобраться в неполадках с темной материей. Ее масса явно должна быть больше.

Однако в расчетах Перлмуттера обнаружились свои собственные проблемы. Если известны плотность Вселенной, текущий коэффициент ее разбегания (постоянная Хаббла) и темпы замедления, это позволяет установить, сколько времени прошло с начала расширения — проще говоря, возраст Вселенной. По данным Лоуренс-Беркли, где омега равна или близка к единице и задана исключительно наличной материей, выходило, что Вселенной не больше 8 миллиардов лет. Увы, астрономы, проанализировавшие свечение самых древних звезд, называют другое число: в пределах 15 миллиардов. Для понимания, что вся Вселенная просто не может оказаться почти вдвое моложе своих элементов, совсем не нужен гарвардский диплом. Помимо трудностей с «кастингом» космологической константы на роль омеги, возникла еще и проблема с омегой-единицей, обусловленной массой. Казалось, единственный достоверный факт — то, что темная материя составляет 0,3 ; все остальное предстоит еще выяснять и объяснять.

Однако не все были разочарованы этим тупиком: по крайней мере один гарвардский астроном остался доволен. Роберта Киршнера беспокоило другое: его исследования сверхновых продвигались слишком медленно, и это внушало опасения, что в соперничестве с Лоуренс-Беркли его группа будет разбита наголову. Между тем гонка за научный приоритет в предсказании судеб Вселенной все еще была далека от завершения.

В своей книге «Экстравагантная Вселенная» Киршнер весьма изящно и остроумно изложил подноготную изучения сверхновых и восстановления космологической константы. В конечном счете именно он решил исход дела и первым вышел с результатами, открывшими новую эпоху в космологии. Однако для этого ученый должен был преодолеть собственную предвзятость.

Группа Киршнера, куда входили исследователи со всех континентов, вела наблюдения сверхновых с горных вершин в Чили, Аризоне и на Гавайях. Как и ученые в Лоуренс-Беркли, они месяц за месяцем разыскивали новые вспышки, затем отслеживали наиболее перспективные варианты, уточняя необходимые детали с помощью космического телескопа «Хаббл». Будучи установлен в автоматической обсерватории на околоземной орбите, он мог извлечь из собираемых данных информацию о расстоянии сверхновой от Земли и о том, как меняется спектр излучения по мере распространения света от точки взрыва.

Поделиться:
Популярные книги

Отмороженный 6.0

Гарцевич Евгений Александрович
6. Отмороженный
Фантастика:
боевая фантастика
постапокалипсис
рпг
5.00
рейтинг книги
Отмороженный 6.0

Совок 2

Агарев Вадим
2. Совок
Фантастика:
альтернативная история
7.61
рейтинг книги
Совок 2

Один на миллион. Трилогия

Земляной Андрей Борисович
Один на миллион
Фантастика:
боевая фантастика
8.95
рейтинг книги
Один на миллион. Трилогия

Мне нужна жена

Юнина Наталья
Любовные романы:
современные любовные романы
6.88
рейтинг книги
Мне нужна жена

Магнатъ

Кулаков Алексей Иванович
4. Александр Агренев
Приключения:
исторические приключения
8.83
рейтинг книги
Магнатъ

На границе империй. Том 8. Часть 2

INDIGO
13. Фортуна дама переменчивая
Фантастика:
космическая фантастика
попаданцы
5.00
рейтинг книги
На границе империй. Том 8. Часть 2

Системный Нуб

Тактарин Ринат
1. Ловец душ
Фантастика:
боевая фантастика
рпг
5.00
рейтинг книги
Системный Нуб

Не верь мне

Рам Янка
7. Самбисты
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Не верь мне

Столичный доктор

Вязовский Алексей
1. Столичный доктор
Фантастика:
попаданцы
альтернативная история
8.00
рейтинг книги
Столичный доктор

LIVE-RPG. Эволюция 2

Кронос Александр
2. Эволюция. Live-RPG
Фантастика:
социально-философская фантастика
героическая фантастика
киберпанк
7.29
рейтинг книги
LIVE-RPG. Эволюция 2

Изгой. Пенталогия

Михайлов Дем Алексеевич
Изгой
Фантастика:
фэнтези
9.01
рейтинг книги
Изгой. Пенталогия

Мама из другого мира. Делу - время, забавам - час

Рыжая Ехидна
2. Королевский приют имени графа Тадеуса Оберона
Фантастика:
фэнтези
8.83
рейтинг книги
Мама из другого мира. Делу - время, забавам - час

Неудержимый. Книга X

Боярский Андрей
10. Неудержимый
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Неудержимый. Книга X

Его темная целительница

Крааш Кира
2. Любовь среди туманов
Фантастика:
фэнтези
5.75
рейтинг книги
Его темная целительница