Тяжелосредное обогащение углей
Шрифт:
Если зерна обогащаемого материала близки по крупности к частицам утяжелителя, то они могут вытеснять только воду и вести себя как взвешенные частицы утяжелителя. Эффективность обогащения гравитационными методами повышается с увеличением разности скоростей падения разделяемых зерен. С уменьшением размеров зерен снижается разность скоростей их падения и резко возрастает время, необходимое для их разделения.
Тяжелосредное обогащение крупного машинного класса (разделение по плотности на легкую и тяжелую фракции) производится в ванне колесного сепаратора, заполненной минеральной суспензией (рис. 2.1).
Рис. 2.1. Принципиальная схема тяжелосредного колесного сепаратора:
1 –
Суспензия в колесный сепаратор поступает обычно двумя потоками – транспортным (горизонтальным) и восходящим (вертикальным).
Вероятностный подход к механизму разделения материала по плотности в тяжелосредных гравитационных сепараторах позволяет с достаточной полнотой раскрыть физическую сущность этого процесса.
Перемещение зерен обогащаемого материала происходит под действием: силы тяжести (веса зерна)
подъемной силы (архимедовой)
силы гидродинамического сопротивления среды
– при ламинарном движении (вязкостное сопротивление)
– при турбулентном движении (профильное сопротивление)
силы турбулентного давления
силы диффузного массопереноса
где d – размер частицы обогащаемого материала, м; ч, с – плотность зерна и среды (суспензии), кг/м3; g – ускорение свободного падения, м/с2; – динамическая вязкость среды, Па·с; – усредненная скорость движения зерна, м/с; – безразмерный коэффициент сопротивления, являющийся функцией критерия Re; т – безразмерный коэффициент сопротивления, входящий в уравнение силы турбулентного давления; v (t) – мгновенная скорость движения зерна, м/с; c, c.max, c.min – скорость потока суспензии, соответственно, усредненная, максимальная и минимальная, м/с; L – характерный размер вихря (L = dmax); K – коэффициент в уравнении турбулентной вязкости (K 1); hmax – максимальный размер стационарного вихря, м.
При перемещении зерна в среде, находящейся в покое или движущейся равномерно без ускорения, т. е. при отсутствии силы инерции Fи=(d3с/6)[d(- c)dt] имеет место равенство разности сил тяжести и подъемной силы и сил гидродинамического сопротивления среды. В этом случае из уравнений (2.4) – (2.8) получают известные формулы конечной скорости
для ламинарного режима
для турбулентного режима
Однако такое приближенное рассмотрение не раскрывает механизма разделения зерен и причин взаимного засорения продуктов обогащения. Более реальная картина может быть получена только при учете сил турбулентного перемешивания.
О.Н. Тихонов показал, что эффективность разделения, которую можно характеризовать средним вероятным отклонением Еpm, функционально зависит от отношения усредненной скорости зерна к коэффициенту микродиффузии (/B) входящего в вероятностное уравнение типа Фоккера-Планка:
где W – вероятность перехода зерна через границу, расположенную в ванне сепаратора на глубине h от места подачи питания; B – коэффициент диффузионного массопереноса.
Входящая в уравнение (2.11) усредненная скорость движения зерна является функцией ряда параметров:
где 0 – предельное напряжение сдвига вязко-пластичной среды (суспензии); остальные обозначения прежние.
Определение величины связано с решением дифференциального уравнения движения, учитывающего сумму действующих сил.
Коэффициент макродиффузии В определяется действием двух факторов: макроскопической неоднородностью скорости потока (градиент горизонтальной составляющей скорости по глубине потока в проточной части ванны сепаратора) В1 и турбулизацией суспензии при движении крупных зерен обогащаемого материала В2. Очевидно, что эти факторы действуют независимо друг от друга и что полный коэффициент диффузионного массопереноса
В принципе такое равенство допустимо, так как при взаимном влиянии указанных возмущений результирующее воздействие может быть учтено введением поправочных коэффициентов
При движении зерен в потоке, имеющем градиент горизонтальной скорости, коэффициент диффузионного массопереноса (называемый в этом случае иногда турбулентной вязкостью) может быть выражен как
Таким образом, В1 зависит от максимального размера стационарного вихря hmax (он равен или меньше глубины ванны сепаратора), разности максимального c.max и минимального c.min значений скорости потока и коэффициента турбулентной вязкости K.
Объяснением вертикальных перемещений зерен может служить наличие стационарных циркуляций суспензии, переносящих зерна разделившегося материала в ниже- или вышележащие слои. По большей части такие циркуляционные потоки возникают в застойных зонах, т. е. в зонах с пониженной скоростью движения суспензии.