Тяжелосредное обогащение углей
Шрифт:
В процессе перемещения в ванне сепаратора за каждым крупным зерном возникает вихревая дорожка, взаимодействие таких вихрей турбулизует весь объем суспензии.
Учитывая, что размер застойных зон, где происходит образование циркуляционных потоков, сопоставим по порядку величин с размером ванны, а размер последней, как правило, на порядок и более превосходит максимальный размер зерна обогащаемого материала, для всех зерен коэффициент В1 можно считать постоянным, зависящим только от гидродинамики потока суспензии в ванне сепаратора. Следовательно, в уравнении (2.12) 1.
Для коэффициента В2 такое допущение
Для оценки взаимосвязи турбулентного режима движения суспензии с крупностью зерен обогащаемого материала следует определить размер зерна, для которого вязкостное сопротивление равно профильному.
Из уравнений равенства суммы движущихся сил и сил сопротивления
< image l:href="#"/>и сил вязкостного и профильного сопротивлений
решенных относительно v (при условии /10), получим:
– для вязкостного сопротивления
– для профильного сопротивления
Графическое решение системы уравнений относительно d при характерных параметрах работы тяжелосредного сепаратора (ч– с=100 кг/м3, с=2000 кг/м3, µ=10– 2 Па·с, 0 =6 н/м2) дает размер граничного зерна dгр = 15 мм, что близко к нижнему пределу крупности (примерно 13 мм) угля, эффективно обогащаемого в сепараторах.
Для зерен крупностью d <= dгр при этих условиях преобладает вязкостное сопротивление, для зерен крупностью d >= dгр – профильное сопротивление, т. е. в первом случае в качестве коэффициента диффузионного массопереноса превалирует В1 (В В1), во втором – В2 (В В2).
Исходя их этих соображений, можно полагать, что при выбранных параметрах процесса энергия турбулентных пульсаций в ванне сепаратора пропорциональна единовременной концентрации материала крупностью более dгр, т. е. дисперсия турбулентных пульсаций Dт зависит от производительности сепаратора, гранулометрического и фракционного состава питания, плотности, вязкости и предельного напряжения сдвига суспензии:
где
Приняв линейный размер турбулентной пульсации L = dmax, можно оценить случайную составляющую скорости турбулентных пульсаций:
где (t) – вертикальная скорость потока суспензии, м/с; – среднее значение вертикальной скорости потока, м/с; max – максимальная скорость движения частицы размером dmax, м/с; K1 – коэффициент пропорциональности (K1<1);
Рассматривая отношение усредненной скорости потока суспензии к полному значению коэффициента диффузионного массопереноса, следует заметить, что при /B->0 разделение не происходит, при /B-> разделение приближается к идеальному.
Очевидно, что при прочих равных условиях наибольшая скорость закономерного перемещения зерна достигается при наименьших значениях динамической вязкости и предельного напряжения сдвига суспензии. Увеличение средней скорости перемещения зерна повышает отношение /B и уменьшает погрешность разделения.
Минимизация величины В также улучшает условия разделения, однако для этого необходимо уменьшить масштаб циркуляций hmax и неоднородность горизонтальных скоростей потока суспензии max – min.
Приведенные теоретические предпосылки определяют следующие основные направления совершенствования процесса обогащения углей в тяжелосредных сепараторах:
оптимизация гидродинамической формы ванны путем устранения застойных зон и сведения к минимуму неоднородности горизонтальных скоростей потоков;
улучшение реологических параметров тяжелой среды;
разделение узких классов обогащаемого материала при минимальном содержании зерен, размер которых меньше нижнего предела крупности (обычно dгр 13 мм).
Как уже отмечалось, гидродинамические условия в ванне сепаратора существенно сказываются на характере движения разделяемых херен, причем возмущающее действие турбулентного перемешивания по масштабу сопоставимо с воздействием реологических факторов суспензии (вязкости и предельного напряжения сдвига).
Замеры скоростей потоков суспензии по всему объему ванны сепаратора с помощью датчиков скорости (термогидрометры) и методом электрогидродинамических аналогий (ЭГДА) показали их существенную неоднородность. Неоднородность скоростей потоков суспензии, как было показано теоретически, является основной причиной возникновения вторичных циркуляций суспензии, наличия зон пониженных скоростей (застойных зон), что приводит к нарушению четкости разделения материала и неравномерности плотности суспензии в ванне сепаратора.